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Abstract 

Recently, the DC motor has been widely used in industry even though its maintenance costs are higher than the 

induction motor. Sometimes the conventional feedback control cannot work well to cope with the changes that 

vary in its dynamic system. The parameters of the dynamic system that changes with time lead to a conventional 

feedback control system is not able to maintain control. This is caused by circumstances which are nonlinear and 

receive many disturbance so that the transient response of the system to be less precise and accurate to the desired 

steady state conditions. To overcome these problems, this paper presents an indirect adaptive control system which 

can cope with the change of the dynamic DC motor system. The adaptive control scheme comprises a recursive 

least square (RLS) parameter identification and robust control method. A robustifying control term is added to 

accommodate the approximation errors and disturbance. This makes the algorithm robust to changes in the plant. 

Simulation results prove the effectiveness of the controller.  

Keywords: DC motor, time varying, indirect adaptive control, robust control, RLS.  

1. Introduction 

The brushed DC motor is widely used in many variable speed drives. Open-loop operation of the motor can be 

unsatisfactory in some industrial applications. If the drive requires constant-speed operation under changing load 

torque, closed-loop control is necessary. The dynamic response of the brushed dc motor angular velocity control 

depends on the designed control law. 

A high performance motor drive system must have good dynamic responses, although the motor parameters are 

time varying. The development of new technologies for dc motor control such as PID, optimal, robust, and other 

control laws have been proposed in many applications (Chow and Tipsuwan, 2003; Delibasi et.al., 2004; Dobra, 

2002; Gurbuz, 1999; Kucukdemiral et.al., 1999; Ohm, and Oleksuk, 2002; Sevinc, 2003). Generally, these high 

performance control laws depend on the operation conditions. In high performance drive, adaptive control is the 

best control law if parameters of system to be controlled are time varying (Astrom and Wittenmark, 1995). 

Angular velocity control of brushed DC motor is time varying system, hence adaptive control is one of the best 

controller. 

Adaptive control is a label assigned to a wide group of approaches, which are based on variations of the control 

inputs adequately to a priori unknown variations of the plant’s dynamics (Craig et.al., 1987). There are two widely 

distinct approaches of adaptive control: direct and indirect ones (Betechuoh et.al., 2007). In direct adaptive 

control, the parameters defining the controller rather than describing the system itself are updated directly, while 

indirect adaptive control relies on on-line identification of plant parameters with an assumption that a suitable 

controller is implemented. 

The traditional adaptive system may go unstable in the presence of small disturbances (Ioannou and Sun, 1996). 

We use standard gradient descent to estimate on-line the plant dynamics. The control law is synthesized based on 

these estimates and a robustifying control term is added to cancel out the effect of approximation errors and 

disturbance. 
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This paper proposes a high performance robust indirect adaptive control law for controlling the brushed dc motor 

angular velocity. This method should be able to learn about  parameters changes by processing the output of 

system and use appropriate controller to accommodate them so it avoids the need of the knowledge the mechanical 

parameters of motor exactly (Astrom and Wittenmark, 1995). It is proposed the application of this technique on 

the mechanic part of the system. 

2. Modeling 

We adopt from (Kucukdemiral et.al., 1999) for the nominal first order linear model of a motor is shown in (15). 
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Since LT  is unknown, it can be included in the plant perturbation, hence transfer function of the nominal plant is 
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The exact model and the nominal model can be related as 

 )1(GG m0 +=          (3)   

where G is exact model, 0G  is nominal model, and m  is a multiplicative perturbation. 

3. Indirect adaptive control 

Adaptive methods seek to use on-line observations, as well as a priori information, to improve the control of 

system over time in response to changes and unknowns in the system and environment (Astrom and Wittenmark, 

1995). Adaptive methods in control system posses several advantages, e.g., fast response, good transient response, 

robustness of stability, insensitivity to the matching parameters variations and external disturbances. Indirect 

Adaptive Control (IAC) is one of adaptive model methods. 

The control system architecture is shown in Fig. 1. It can be seen that an explicit separation between identification 

and control is assumed. The basic idea is that a suitable controller can be designed on line if a model of the plant 

is estimated on line from the available input-output measurements. The scheme is termed indirect because the 

adaptation of the controller parameters is done in two stages: (1) on-line identification of the plant parameters; (2) 

on-line computation of the controller parameters based on the current identified plant model. 

 

Fig. 1: The scheme of indirect adaptive control 

The identification process consists of estimating the unknown parameters of the system dynamics (Ljung, 1987). 

The recursive least square (RLS) method has been recommended for the identification process for easy 

implementation and application to real systems. 
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 Recursive least squares (RLS) methods that have been widely used with several advantages such as easy 

numerical solution and fast parameter convergence gives a consistent modelling accuracy over a wide range of 

operating conditions and is the best linear unbiased estimate (Soderstrom and Stoica, 1989; Ljung and Glad, 1994). 

The discrete mathematical model of the DC motor can be described in terms of input u(t) and output y(t) with the 

adequate order of the coefficients A, B as: 

 )1t(Bu)t(Ay −=         (4)   

where u(t) is discrete input signal, y(t) is discrete output signal, and 
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A model of the system (4) can be presented in the form of 

 = Tx)t(y          (7)   

where is a vector of unknown parameters defined by 

  m0n1

T a,,b,a,,a −−−=   
      (8)   

and θ , vector of regression which consists of measured values of input and output 
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A model given with (7) presents an accurate description of the system. However, in this expression the vector of 

system parameters θ is not known. It is important to determine it by using available data in signal samples at 

system output and input. For that purpose a model of a system is supposed 

 )t(êˆx)t(y T +=         (10)   

where ̂  is a vector of supposed values of system parameters, and )t(ê  is an error in modeling at the moment t. 

The vector of supposed values of the parameters, ,̂  should be chosen in such a way that the whole error in 

modeling can be minimized. From (7) and (10) it appears that 

 )ˆ(x)t(ê T −=          (11)   

After the time interval of N sampling periods, a model (10) can be shown in a vector form 
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By choosing an adequate performance function (Robertson and Lee, 2002), based on the square prediction error: 

 êêêJ T
N

1

2 == 
 
        (13)   

 



  
 

218 | F o I T I C 2 0 1 7  
  

the unknown parameters of the system are determined as a solution to: 

 0
ˆ
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        (14)   

According to (12) and (13), the solution of the equation (14) has a form 

    yxxxˆ T1T −
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        (15)   

Sometimes, the assessment is needed to be done whenever the information is coming about input/output samples, 

that is, in each sampling period. The technique which is appropriate for this purpose is Recursive Least Squares 

Method. With this method, a supposed model from the previous sampling period )1t(ˆ −  is used for assessment 

of )t(ŷ  system output in the given sampling period. Estimated system output is compared with the real system 

output y(t) and on the basis of the obtained difference an error signal ε(t) is generated. Now, so called mechanism 

of updating, on the basis of error signal, correct values of supposed parameters of the system )1t(ˆ −  on )t(̂ . 

Scheme of the recursive estimation is given in Fig. 2. 

If the following symbols are introduced 

    1T )t(x)t(x)t(P
−

=         (16)   

 

Fig. 2: Scheme of recursive least squares method 

Suppose now that the DC motor parameters are identified on a a short time (eg starting). the used algorithm to 

identify the mechanical and electrical parameters is based on the recursive least squares: 
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Accordingly, transfer function of the observed system is in the form of 
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Use the backward difference transformation of (18) 
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The continuous parameters are found via the relations 
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where h is sampling period. 

The dynamic equation of a motor can be approximated by using the following first order differential equation 

 uba
dt

d
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        (21)   

where tVu = . 

The objective of this paper is to design a control law )t(u  such that, the output, )t( , will follow a desired 

trajectory, )t(d . 

Let us define the tracking error as 

 −= de

 
        (22)   

Define also an error metric as 

  +=
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        (23)   

where   is a positive scalar. Note that the choice of the metric surface, 0= , guarantees that the tracking error, 

,e  is governed after such finite amount of time by the first-order differential equation .0ee =+  In case of ideal 

error metric motion the error metric and its phase velocities should be identically zero i.e. 

 0=  
 

        (24)   

 0=  
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The necessary control input can be found as 

 )ea(
b

1
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Since a  and ,b  are unknown, so we propose the use of the following control law 
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where ru  is a robustifying control term. In this paper we assume that .1.0bm   

he robustifying control term ru  can be constructed as a function of error metric,  , as follow 

 = wu r

 
        (28)   

The weight w  is adaptable that is updated during the operation. The goal is to push   to zero in finite time. To 

achieve this requirement, the following Lyapunov function is selected 

 2
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The function selected is positive definite and it vanishes only when 0= . A global reaching condition is its time 

derivative be negative definite. Choosing its time derivative as 
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 2V −=

 
        (30)   

where,   is a positive constant, restricts the derivative to be negative definite. Substituting (29) into (30), the 

following equation is obtained 

 2−=

 
        (31)   

Going one step further, 

 0)( =+ 

 
        (32)   

Hence, for the Lyapunov stability criteria to be held, 

 0=+

 
        (33)   

must be satisfied for 0 . The goal is to push the function +  to zero. To achieve this goal the error function 
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        (34)   

 is introduced to the error metric function and the parameters are updated accordingly. 

The parameters are updated using simple gradient descent approach –in continuous form– or back propagation : 
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where,   is the learning constant, generally chosen between 0 and 1. To compute the parameter updates, the 

derivative of the error function E  w.r.t.   should be found. Using the chain rule, the derivative can be written as 
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Substituting (33) into (36) and taking the derivatives, the following equations are obtained: 
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As a result, the parameters update algorithm can be stated as 
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4. Simulation results 

Load torque is unknown but in the simulation it is assumed as follows. 

Nm10x8.19T 6

L

−=  
a. Assume that the values of the motor parameters are unknown 
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Fig. 3: Angular velocity transient response using controller with unknown parameters 

b. Assume that the nominal values of the motor parameters are known 

 

Fig. 4: Angular velocity transient response using controller with known parameters 

Figure 3 shows angular velocity transient response if the motor parameters are unknown. The system is stable, 

but settling time is large enough, about 17 seconds. Figure 4 shows transient response after learning process to 

find exact parameters. Settling time is reduced, about 0.6 seconds. This facts show that control law using robust 

indirect adaptive control can control the angular velocity of brushed dc machine sufficiently without need to know 

the exact parameters. On the other hand, if the exact parameters are known then the performance of angular 

velocity control is better. 

5. Conclusion 

Actual experimentation on bulky power components can be expensive and time consuming. But simulation offers 

a fast and inexpensive means to learn more about these components. 

The control law based on robust indirect adaptive control can control angular velocity of brushed dc motor, 

although the parameters of system are time varying. In order to increase the control system performance, the exact 

parameters are required. 

The simulation and modeling of the DC motor also gave an inside look of the expected output when testing the 

actual DC motor. The results from the simulation were never likely to occur in real-life condition due to the 

response times and condition of the actual motor. 

6. References  

Astrom, K. J., and B. Wittenmark, 1995. Adaptive control. Massachusetts:Addison-Wesley Publishing Company. 

Betechuoh, B. L., T. Marwala, and T. Tettey, 2007. Using inverse neural networks for HIV adaptive control. 

International Journal of Computational Intelligence Research, 3(1), 11–15,. 

Chow, M. Y. and Y. Tipsuwan, 2003. Gain adaptation of networked DC motor controllers based on QOS 

variations. IEEE Transactions on Industrial Electronics, 50(5),  936–943. 



  
 

222 | F o I T I C 2 0 1 7  
  

Craig, J. J., P. Hsu, and S. S. Sastry, 1987. Adaptive control of mechanical manipulators. The Int. J. of Robotics 

Research, 6(2), 16–28. 

Delibasi, A., T. Turker, and G. Canserver, 2004. Real time DC position control by fuzzy logic and PID controllers 

using labview. International IEEE Conference on Mechatronics & Robotics ’04, Aachen, Germany, September, 

9–15. 

Dobra, P., 2002. Robust PI control for servo DC motor. International Conference on Control Applications, 1, 100–

110. 

Gurbuz, F., and E. Apkinar, 2002. Stability analysis of a closed loop control for a pulse width modulated DC 

motor drive. Turk. J. Elec. Engin., 10(3), 427–438. 

Ioannou, P. A., and J. Sun, 1996. Robust Adaptive Control. New Jersey:Prentice Hall International. 

Krause, P. C. , and O. Wasynczuk, 1989. Electromechanical Motion Devices. Singapore:McGraw-Hill. 

Kucukdemiral, I. B., G. Cansever, and K. Gulez, 1999. Design of a dynamic and robust speed controller for a DC 

servo motor by using a DSP. Proc. 2nd International Conference on Mathematical and Computational 

Applications in Engineering, Baku, Azerbaijan, Sep. 1–3. 

Ljung, L., 1987. System identification: Theory for the user. Englewood Cliffs, NJ, USA: Prentice Hall. 

Ljung, L., and T. Glad, 1994. Modeling of Dynamic Systems. New Jersey: Prentice-Hall, Inc.. 

Ohm, D. Y., and R. J. Oleksuk, 2002. Influence of PWM schemes and commutation methods for DC and brushless 

motors and drives. P.E. Technology 2002 Conference, Stephens Convention Center (Rosemont, IL), Oct. 27–31. 

Ong, C. M., 1998. Dynamic Simulation of Electric Machinery. New Jersey:Prentice Hall International. 

Robertson D. G., and J. H. Lee, 2002. On the use of constraints in least squares estimation and control, Automatica, 

38, 1113–1123. 

Sevinc, A., 2003. A full adaptive observer for DC servo motors. Turk. J. Elec. Engin., 11(2), 427–438. 

Soderstrom, T., and P. Stoica, 1989. System Identification. Hertfordshire: Prentice Hall International (UK) Ltd. 

 


