Model of Ubiquitous Precision Livestock System 4.0: A Technological Review

Authors

  • Irawan Afrianto Department of Computer Science, Institut Pertanian Bogor (IPB), Bogor - INDONESIA
  • Sri Wahjuni Department of Computer Science, Institut Pertanian Bogor (IPB), Bogor - INDONESIA
  • Taufik Djatna Department of Agro-Industrial Technology, Institut Pertanian Bogor (IPB), Bogor - INDONESIA

Keywords:

IoT, drones, geofence, wearable devices, LoRa, Livestock 4.0.

Abstract

The main objective of this study is to propose a model Ubiquitous Precision Livestock 4.0 system that combines the ability of IoT and drones to monitor livestock biomass and herd cattle, wearable devices on livestock to provide location information and animal health, and utilize data communication networks using Long Range (LoRa) for coverage wider. The methods used in developing this model include collecting data and literature, analyzing technology needs, and developing the model. The results show that the model developed has a huge potential to be implemented to support the 4.0 livestock system which is faster, more accurate and precise in providing information to farmers.

References

Arifin, F., Daniel, R.A. and Widiyanto, D., 2014. Autonomous detection and tracking of an object autonomously using ar. drone quadcopter. Jurnal Ilmu Komputer dan Informasi, 7(1), pp.11-17.

Augustin, A., Yi, J., Clausen, T. and Townsley, W.,. 2016. A study of LoRa: Long range & low power networks for the internet of things. Sensors, 16(9), p.1466.

Barbedo, J.G.A. and Koenigkan, L.V., 2018. Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook on Agriculture, 47(3), pp.214-222.

Budiharto, W., 2019. Inovasi Digital di Industri Smart Farming: Konsep dan Implementasi. In Seminar Nasional Lahan Suboptimal (No. 1, pp. 31-37).

Elliott, K.C., Montgomery, R., Resnik, D.B., Goodwin, R., Mudumba, T., Booth, J. and Whyte, K., 2019. Drone Use for Environmental Research [Perspectives]. IEEE Geoscience and Remote Sensing Magazine, 7(1), pp.106-111.

F.A.O., 2018. Shaping the future of livestock : Sustainably, responsibly, efficiently. 10th Global Forum for Food and Agriculture, Roma, p.1 [Online].. Avaliable : http://www.fao.org/publications/card/en/c/I8384EN/. Accessed : June 25, 2019

Haladjian, J., Haug, J., Nüske, S. and Bruegge, B., 2018. A wearable sensor system for lameness detection in dairy cattle. Multimodal Technologies and Interaction, 2(2), p.27.

Hashim, R., Ikhmatiar, M., Karmin, M., & Herawan, T., 2011. Mosque Tracking on Mobile GPS and Prayer Times Synchronization for Unfamiliar Area. . International Journal of Future Generation Communication and Networking, 119, 237-246.

Khanna, A. and Kaur, S., 2019. Evolution of Internet of Things (IoT) and its significant impact in the field of Precision Agriculture. Computers and electronics in agriculture, 157, pp.218-231.

Knight, C.W., Bailey, D.W. and Faulkner, D., 2018. Low-Cost Global Positioning System Tracking Collars for Use on Cattle. Rangeland ecology & management, 71(4), pp.506-508.

Liandana, M., 2019. Penerapan Teknologi LoRa Pada Purwarupa Awal Wearable Device. RESEARCH: Computer, Information System & Technology Management, 2(02), pp.40-46.

Maiouak, M. and Taleb, T., 2019. Dynamic Maps for Automated Driving and UAV Geofencing. IEEE Wireless Communications, 26(4), pp.54-59.

Mitkari, S., Pingle, A., Sonawane, Y., Walunj, S. and Shirsath, A., 2019. IOT Based Smart Poultry Farm. system, 6(03).

Muangprathub, J., Boonnam, N., Kajornkasirat, S., Lekbangpong, N., Wanichsombat, A. and Nillaor, P., 2019. IoT and agriculture data analysis for smart farm. Computers and electronics in agriculture, 156, pp.467-474.

Lakhwani, K., Gianey, H., Agarwal, N. and Gupta, S., 2019. Development of IoT for Smart Agriculture a Review. In Emerging Trends in Expert Applications and Security (pp. 425-432). Springer, Singapore.

Muminov, A., Na, D., Lee, C.W. And Kang, H.K., 2019. Monitoring And Controlling Behaviors Of Livestock Using Virtual Fences. Journal Of Theoretical And Applied Information Technology, 97(18).

Oktaria, E.R., Setyawan, G.E. and Kurniawan, W., 2018. Sistem Kendali Jarak Tempuh Quadcopter Menggunakan Metode Proportional Integral

Derivative. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, p.964X.

Pratama, Y.P., Basuki, D.K., Sukaridhoto, S., Yusuf, A.A., Yulianus, H., Faruq, F. and Putra, F.B., 2019. Designing of a Smart Collar for Dairy Cow Behavior Monitoring with Application Monitoring in Microservices and Internet of Things-Based Systems. In 2019 International Electronics Symposium (IES) (pp. 527-533). IEEE.

Sinha, R.S., Wei, Y. and Hwang, S.H., 2017. A survey on LPWA technology: LoRa and NB-IoT. Ict Express, 3(1), pp.14-21.

Wahyuni, S., Jaya, I.N.S. and Puspaningsih, N., 2016. Model for estimating above ground biomass of reclamation forest using unmanned aerial vehicles. Indonesian Journal of Electrical Engineering and Computer Science, 4(3), pp.586-593.

Widyantara, I.O., Warmayana, I.G. and Linawati, L., 2015. Penerapan Teknologi GPS Tracker Untuk Identifikasi Kondisi Traffik Jalan Raya. Majalah Ilmiah Teknologi Elektro, 14(1).

Yusandi, S., 2015. Model Penduga Biomassa Hutan Mangrove Menggunakan Citra Resolusi Sedang Di Areal Kerja BSN Group Kalimantan Barat. Bogor (ID): Institut Pertanian Bogor.

Published

2021-04-22

Issue

Section

FoITIC 2020