Analisis Arus Saluran, Jatuh Tegangan Dan Rugi — Rugi Daya Jaringan Distribusi 20kV Pada Penyulang KRNI

RIZA FAHMI ARIFIN^{1*}, NASRUN HARYANTO¹

¹Institut Teknologi Nasional Bandung Email: rizayuichi01@mhs.itenas.ac.id

Received 06 02 2023 | Revised 13 02 2023 | Accepted 13 02 2023

ABSTRAK

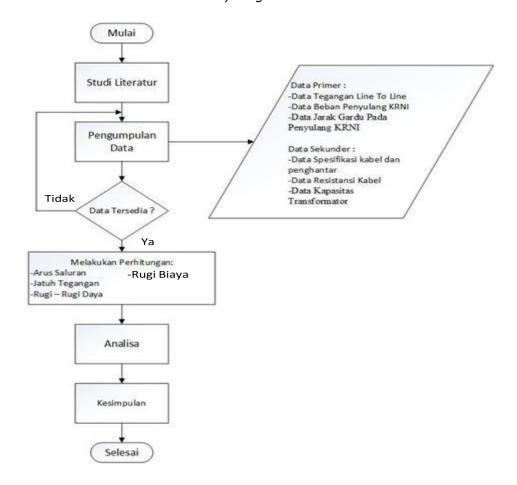
Gangguan yang mempengaruhi keandalan dan stabilitas penyaluran tenaga listrik diantaranya yaitu arus saluran, jatuh tegangan dan rugi-rugi daya. Penelitian ini bertujuan untuk mengetahui arus saluran, jatuh tegangan, rugi-rugi daya dan rugi biaya yang terjadi pada penyulang KRNI serta rugi biaya PLN. Pengambilan data pada penelitian ini dilakukan pada setiap transformator distribusi SUTM 20 KV yang melayani penyulang KRNI. Setelah itu dilakukan perhitungan dan analisis untuk memperoleh faktor utama gangguan dan membandingkannya dengan standar PLN. Berdasarkan hasil perhitungan didapat hasil dari salah satu gardu nya yaitu gardu BHJ arus salurannya sebesar 101 A, jatuh tegangannya sebesar 511,254 Volt dan rugi-rugi dayanya 2,23 watt serta rugi biaya Rp.723/24 jam.Berdasarkan hasil tersebut maka arus saluran, jatuh tegangan dan rugi-rugi daya masih dalam batas wajar sesuai ketentuan S XYZnomor 72 tahun 1987 yaitu untuk jatuh tegangan sebesar <5% dan untuk rugi-rugi daya sebesar <10%.

Kata kunci: arus saluran, distribusi tenaga listrik, jatuh tegangan, rugi-rugi daya

ABSTRACT

Disturbances that affect the reliability and stability of electric power distribution include line currents, voltage drops and power losses. This study aims to determine line current, voltage drop, power losses and cost losses that occur in KRNI feeders and XYZcost losses. Data collection in this study was carried out on each SUTM 20 KV distribution transformer serving KRNI feeders. After that, calculations and analysis are carried out to obtain the main factors of disturbance and compare them with XYZstandards. Based on the calculation results, the results obtained from one of the substations, namely the BHJ substation, the channel current is 101 A, the voltage drop is 511.254 Volts and the power losses are 2.23 watts and the cost loss is Rp. 723/24 hours. Based on these results, the channel current, voltage drop and power losses are still within reasonable limits in accordance with the provisions of S XYZnumber 72 of 1987, namely for a voltage drop of <5% and for power losses of <10%.

Keywords: line current, voltage drop, KRNI feeder , power losses


1. PENDAHULUAN

Tenaga listrik sudah menjadi kebutuhan pokok manusia, aktivitas penggunaan tenaga listrik terus semakin meningkat hal ini berkaitan dengan tingkat perekonomian dan jumlah penduduk yang meningkat pada suatu wilayah ataupundaerah sehingga penyaluran energi listrik harus dapat terjamin (Albaroka, 2017) Sistem ini terbagi menjadi tiga bagian utama, yaitu pembangkit, transmisi, dan distribusi(Kuwahara S, Aris Munandar, 1993). Ketiga bagian tersebut saling terintegrasi dalam rangka menjaga kestabilan penyaluran energi listrik dari pembangkit sampai ke konsumen dengan baik, karena ketidakstabilan sistem tenaga listrik dapat mengganggu kontinuitas pelayanan daya ke beban. Pada jaringan distribusi Jumlah energi listrik yang sampai ke beban tidak sama dengan jumlah energi listrik yang dibangkitkan karena terjadi susut atau rugi-rugi (losses) energi. Hal ini disebabkan oleh berbagai hal yaitu jarak antara pembangkit dan konsumen yang berjauhan sehingga pada peralatan listrik jaringan distribusi mengalami rugi-rugi serta peralatan yang sudah berumur(Rangga, 2016). Terdapat beberapa masalah yang sering dihadapidalam penyaluran energi listrik diantaranya adalah "Jatuh Tegangan dan rugi rugi daya", jatuh tegangan yang diperbolehkan dalam penyaluran distribusi hanya bolehsebesar 5% untuk jaringan udara SKTM sebesar 2% (Hontong, Tuegeh, & Patras, 2015). Besarnya jatuh tegangan pada saluran distribusi tergantung padabeberapa faktor diantaranya jenis dan panjang saluran penghantar, sistem pembebanan trafo, faktor daya, besarnya jumlah daya terpasang dan faktorsambungan kabel . Terkait dengan susut daya listrik 20 kV ada beberapa penelitian danstudy yang telah dilakukan. Permasalahan yang dialami XYZyaitu besarnya rugi-rugi dayayang menyebabkan daya yang dikirimkan tidak sebesar daya yang dihasilkan. Banyak faktor yang berhubungan dengan rugi-rugi daya tersebut, salah satunya yaitu jumlah pemakai(**Deddi, 2018**).Analisis yang dilakukan pada penyulang saluran distribusi tegangan menengah akan dianalisa apakah arus saluran, tegangan jatuh, rugi rugi daya dan rugi biaya yang terjadi pada penyulang KRNI sesuai standar yang ditetapkan oleh PLN. Berdasarkan kondisi tersebut, maka penulis mengambil judul penelitian "Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya Distribusi 20KV Pada Penyulang KRNI".

2. METODOLOGI PENELITIAN

2.1. Perancangan Penelitian

Dalam penelitian yang berjudul "Analisis Arus Saluran, Jatuh Tegangan dan Rugi –Rugi Daya Distribusi 20KV Pada Penyulang KRNI". Penulis melakukan observasi lapangan, wawancara, pengumpulan data, pengolahan data, ploting data dengan langkah-langkah sistematis yang disusun dalam suatu metodologi penelitian. Adapun metedologi penelitian dijelaskan pada Gambar 1.

Gambar 1. Diagram Alir Analisis Arus Saluran, Jatuh Tegangan dan Rugi — Rugi Daya Serta Rugi Biaya

Merujuk Pada Gambar 1 terdapat diagram Alir Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya. Pada Pengerjaannya dilakukan dengan terjun langsung ke lokasi gardu induk PGDRN penyulang KRNI. Adapun data yang harus dikumpulkan untuk menganalisa Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya gardu gardu induk PGDRN penyulang KRNI yaitu sebagai berikut:

- 1. Data Tegangan Line to line
- 2. Data Beban Penyulang KRNI
- 3. Data Jarak Gardu Pada Penyulang KRNI
- 4. Data Power Factor
- 5. Spesifikasi Kabel dan Penghantar
- 6. Data Kapasitas Transformator

Berikut cara melakukan perhitungan dengan menggunakan persamaan-persamaanyang telah ditentukan sebagai berikut :

2.2 Perhitungan Arus Saluran

Untuk menghitung arus saluran pada jaringan tiga fasa maka menggunakan rumus persamaan (1).

$$I = \frac{S}{\sqrt{3}V_{IJ}} \tag{1}$$

Dimana:

I = Arus Saluran (Ampere)

S = Daya Semu (VA)

 V_{LL} =Tegangan JTM(20Kv)

2.3 Perhitungan Resistansi dan Reaktansi Total

Sebelum menghitung tegangan jatuh, maka perlu melakukan perhitungan resistansidan reaktansi terlebih dahulu. Berikut ini Rumus Resistansi dan Reaktansi Total menggunakan persamaan (2) dan (3).

```
R_{total} = R. Panjang Saluran .....(2)

X_{total} = X. Panjang Saluran .....(3)
```

2.4 Perhitungan Tegangan Jatuh

Jatuh tegangan terjadi karena ada pengaruh dari tahanan dan reaktansi saluran, perbedaan sudut fasa antara arus dan tegangan serta besar arus beban, jatuh tegangan pada saluran bolak-balik tergantung pada impedansi, beban, dan jarak.Suatu sistem arus bolak-bolak, besar jatuh tegangan dapat dihitung berdasarkan diagram fasor . Rumus dapat menggunakan persamaan (4) dan (5).

$$\Delta V = I. \ell(R\cos\emptyset + X\sin\emptyset)$$

$$DV = \frac{\sqrt{3} I.\ell(R\cos\emptyset + X\sin\emptyset)}{V.I.}.100\%$$
(5)

2.5 Perhitungan Rugi – Rugi Daya

Rugi rugi (losses) daya aktif dan daya semu menggunakan persamaan (6) dan (7).

$\Delta P = I^2 R$	(6)
$\Delta Q = I^2 X$	(7	')

 ΔP = rugi - rugi daya aktif (watt). I = Arus saluran (Ampere).

 $\Delta Q = \text{rugi} - \text{rugi daya reaktif (VAR)}.$ R = Resistansi total pada saluran (Ω)

X = Reaktansi total pada saluran

3. Hasil dan Analisis

Data yang diambil merupakan data yang ada pada penyulang KRNI PT. XYZ.

3.1 Trafo Distribusi Yang Diasuh Oleh Penyulang KRNI

Pada penyulang KRNI terdapat 27 Gardu Distribusi yang tersebar sepanjang jaringan. berikut ini data trafo distribusi yang diasuh oleh penyulang KRNI.

Tabel 1. Data penyulang KRNI (Sumber : PT. XYZ)

No	Gardu	Wilayah Kerja	Merek	L(kms)	Tegangan JTM(KV)
1	2	3	4	5	6
1	ВНЈ	KALIPUCANG	SHENYANG	7,4	20

Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya Jaringan Distribusi 20kV pada Penyulang KRNI

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2(2)

Arifin, Haryanto

1	2	3	4	5	6
27	ВНЈ	KALIPUCANG	SHENYANG	5,1	20

Pada Tabel 1 terdapat data data mengenai penyulang KRNI. Data tersebut meliputidata Gardu yang disuplai oleh penyulang KRNI,wilayah kerja dari setiap gardu distribusi, merek transformator, jarak hingga tegangan SUTM .

Tabel 2. Data Pengukuran Transformator Distribusi penyulang KRNI

No	Gardu	Kapasitas Trafo(KVA)	Beban Puncak(KVA)	Cos Ø
1	2	3	4	5
1	ВНЈ	50	30,4	0,85
2	CCRY	100	47,3	0,85
3	CGJ	200	98,0	0,85
4	CIPI	50	23,1	0,85
5	DKI	100	72,9	0,85
6	DSKN	50	25,0	0,85
7	KCBD	50	33,1	0,85
8	KLP	200	152,5	0,85
9	KPT	250	118,7	0,85
10	KPTG	200	124,3	0,85
11	KRI	100	60,6	0,85
12	KSRS	50	21,9	0,85
13	NDNG	50	27,6	0,85
14	NSI	50	21,0	0,85
15	NSIP	50	28,0	0,85
16	PHR	200	133,1	0,85
17	PHRE	100	44,0	0,85
18	PHRS	100	45,7	0,85
19	PLD	100	70,5	0,85
20	PNI	50	34,2	0,85
21	SDW	100	43,8	0,85

Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya Jaringan Distribusi 20kV pada Penyulang KRNI

1	2	3	4	5
22	SKNS	50	22,0	0,85
23	SMAH	50	32,7	0,85
24	SSDW	100	60,3	0,85
25	SPHR	100	44,4	0,85
26	SDPI	100	63,3	0,85
27	ВНЈ	50	30,4	0,85

Berdasarkan Tabel 2, terdapat data data pengukuran dari setiap transformator distribusi yang ada pada penyulang KRNI. Data tersebut meliputi nama gardu,kapasitas transformator, beban puncak transformator dan cos phi.

3.2 Data Penghantar Dan Standar Konstanta Jaringan Tabel 3. Jenis, Luas, dan Panjang Penampang Penyulang

Penyulang	KRNI
Jenis Penghantar	AAAC
Diameter Penghantar	150 mm ²
Power Faktor	0,85

Berdasarkan Tabel 3, terdapat data yang mendeskripsikan jenis, luas dan Panjang penampang pada penyulang KRNI . Data tersebut meliputi nama penyulang, jenis penghantar, diameter penghantar hingga power factor.

Tabel 4. Nilai Konstanta Jaringan (Sumber : Konstanta Jaringan S XYZ64 (XYZ, 1985)

No	Luas Penampang (mm²)	Impedansi (Ω/kms)
1	AAAC 70	0,4608 + j0,3449
2	AAAC 150	0,2162 + j0,3305
3	AAC 70	0,4202 + j0,3572
4	AAC 150	0,1961 + j0,3305

Pada Tabel 4 dapat dilihat bahwa terdapat beberapa nilai konstanta pada sebuahjaringan. Penulang KRNI ini menggunakan nilai konstanta jaringan yaitu dengan luas penampang AAAC 150 dan impedansi 0,2162+j0,3305.

3.3 Perhitungan Resistansi dan Reaktansi

Menghitung resitansi dan reaktansi menggunakan rumus dibawah ini. Data R merupakan data pada Tabel 3 nomor 2 sesuai jenis kabel dan ukuran kawat. Panjang saluran yang dihitung adalah data Tabel 1 nomor 1.

$$R_{total}=R$$
 . Panjang Saluran
$$X_{total}=X$$
 . Panjang Saluran
$$X_{total}=0.2162(^{\Omega}/_{kms}).$$
 7,4 kms
$$X_{total}=0.3305(^{\Omega}/_{kms}).$$
 7,4 kms
$$X_{total}=2.4457\Omega$$

3.4 Perhitungan Arus dan Drop Tegangan Penyulang KRNI

Diketahui data Tegangan GI(20 Kv) sebesar 20,6 kV dan arus penyulang sebesar 101 A. Adapun data impedansi dapat dilihat pada Tabel 5. Langkah pertama yang perlu dilakukan yaitu mencari jatuh tegangan pada saluran Penyulang menuju Gardu BHJ. Untuk mengetahui itu, maka digunakan rumus sebagai berikut.

$$\Delta V_{GI-BHJ} = I_{Penyulang} \cdot Z_{Penyulang}$$

 $\Delta V_{GI-BHJ} = 101 \cdot 2,9225 = 295 V(perfasa)$

untuk dijadikan tiga fasa maka hasil diatas dikalikan akar tiga.

$$\Delta V_{GI-BHJ} = 295 . \sqrt{3} = \overline{5}11V$$

Maka untuk menghitung tegangan yang terkirim ke gardu BHJ yaitu:

$$V_{GI-BHJ} = 20600V - 511V = 20089 V$$

Selanjutnya yaitu mencari Arus ke beban menggunakan rumus.

$$I_{L(BHJ)} = \frac{S_{(BHJ)}}{\sqrt{3}.V_{GI-BHJ}} = \frac{30400}{\sqrt{3}.20089} = 0,873 A$$

Untuk mencari Arus Saluran selanjutnya, maka menggunakan rumus Hukum KirchoffArus yaitu:

$$I_{Feeder} - I_{L(BHJ)} - I_{(BHJ-CCRY)} = 0$$

$$101-0.873 = I_{(BHJ-CCRY)}$$

$$I_{(BHJ-CCRY)} = 100.127 \text{ A}$$

3.5 Perhitungan Rugi Daya

Menghitung rugi daya aktif menggunakan rumus dibawah ini. Menggunakan Iphasadan Rtotal yang telah dihitung.

$$\Delta P = I^2 R$$
 $\Delta P = (0.877)^2$. 1,5999 Ω
 $\Delta P = 1,2305 Watt$

Berdasarkan pengolahan data yang dilakukan, maka didapat hasil perhitunganseluruh data yang ada pada Tabel 5.

Tabel 5. Hasil Perhitungan Arus Saluran, Jatuh Tegangan dan Rugi Daya

No	Gardu	L (kms)	Arus Saluran(A)	Jatuh Tegangan(V)	Persentase Jatuh Tegangan(%)	Rugi Rugi Daya Aktif(Watt)
1	ВНЈ	7,4	101	511.254	4.42759	2.2309
2	CCRY	5,6	100.1263	383.544	3.32159	4.2476
3	CGJ	7,8	98.7404	526.838	2.63419	26.8120
4	CIPI	5	95.7902	327.613	1.63806	0.9884
5	DKI	5,2	95.0827	338.204	1.69102	10.6149
6	DSKN	5,5	92.8092	349.166	1.74583	1.3717

Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya Jaringan Distribusi 20kV pada Penyulang KRNI

1	2	3	4	5	6	7
7	KCBD	6,32	92.0145	448.590	2.24295	3.2756
8	KLP	4,42	90.9358	274.926	1.37463	0.4449
9	KPT	6,23	90.4309	385.375	1.92687	0.3973
10	KPTG	7,1	90.0291	437.242	2.18621	0.5230
11	KRI	4,73	89.5972	289.889	1.44945	8.5777
12	KSRS	5,23	87.4543	312.797	1.56398	1.2872
13	NDNG	6	86.6648	355.696	1.77848	2.4539
14	NSI	5	85.6472	292.923	1.46461	1.2294
15	NSIP	7,32	84.8581	424.768	2.12384	3.3832
16	PHR	8	83.7762	458.443	2.29222	0.8895
17	PHRE	6,21	83.2456	353.615	1.76808	7.9280
18	PHRS	4,47	81.4476	249.033	1.24517	6.3789
19	PLD	4,2	79.5467	228.520	1.14260	14.7446
20	PNI	6,25	76.5651	327.333	1.63666	5.4206
21	SDW	5,56	75.0832	285.559	1.42780	8.2595
22	SKNS	5,87	73.1438	293.690	1.46845	2.3025
23	SMAH	4,72	72.1472	232.930	1.16465	4.2439
24	SSDW	6,1	70.6383	294.739	1.47369	19.5613
25	SPHR	6,68	67.7887	309.748	1.54874	12.2262
26	SDPI	4,4	65.6359	197.357	0.98678	16.9086
27	ВНЈИ	5,1	62.5150	218.074	1.09037	4.6977

Pada Tabel 5 berisi perhitungan arus saluran, jatuh tegangan dan rugi biaya pada penyulang KRNI. Hasil ini jika dibandingkan dengan standar yang diperbolehkan oleh XYZ sesuai S XYZ nomor 72 tahun 1987 masih berada dalam batas wajar yaitu5%.

3.7 Perhitungan Rugi Biaya

Rugi biaya yang dimaksud merupakan biaya yang hilang akibat jatuh tegangan. Rugi biaya ini dialami oleh PT. XYZ sebagai pemilik pelayanan jaringan distribusi 20 kV Penyulang KRNI. Nilai rugi biaya didapat dengan cara mengalikan nilai rugi daya (P dalam kilo watt) dengan waktu (t dalam jam) dan dikali tarif listrik. Gardu listrik pada penyulang KRNI termasuk pada golongan pelanggan rumah tangga daya 900 VA RTM (Rumah Tangga Mampu) sebesar Rp 1.352/kWh. Rata-rata waktu operasi pabrik (konsumen gardu distribusi) selama 24jam/hari. Perhitungan rugi biaya akibat jatuh tegangan pada penyulang KRNI yaitusebagai berikut.

Biaya = Rugi Daya (P) x Tarif Listrik (Rp) x Waktu

Arifin, Haryanto

Tabel 6. Rugi Biaya Selama 24 Jam

Tabel 6. Rugi Biaya Selama 24 Jam							
		Rugi Rugi Daya	Rugi Biaya/24				
		aktif(Watt)	Jam				
No	Line	aktii(vvatt)	Juin				
			(Rp)				
			(NP)				
1	DIII	2 2200	72 207				
1	ВНЈ	2.2309	72.387				
2	CCRY	4.2476	137.827				
3	CGJ	26.8120	869.995				
4	CIPI	0.9884	32.071				
5	DKI	10.6149	344.433				
	2111	10.01.15	3111133				
6	DSKN	1.3717	44.507				
U	DSKN	1.3/1/	44.307				
7	NODE	2.2756	100 202				
7	KCBD	3.2756	106.288				
8	KLP	0.4449	14.436				
9	KPT	0.3973	12.891				
10	KPTG	0.5230	16.969				
	-						
11	KRI	8.5777	278.328				
11	IXIXI	8.3777	270.520				
10	Kaba	4 2072	44.760				
12	KSRS	1.2872	41.768				
13	NDNG	2.4539	79.623				
14	NSI	1.2294	39.890				
15	NSIP	3.3832	109.777				
16	PHR	0.8895	28.862				
		0.000	_0.00_				
17	PHRE	7 0290	257.247				
1/	THE	7.9280	237.247				
10	DIIDC	C 2702	200.002				
18	PHRS	6.3789	206.982				
		_					
19	PLD	14.7446	478.434				
20	PNI	5.4206	175.886				
21	SDW	8.2595	268.004				
22	SKNS	2.3025	74.711				
- -	~		,, ==				
23	SMAH	4.2439	137.705				
23	SMAU	4.2439	137.703				
2.4	aabaa	10.5515	604 = 5.5				
24	SSDW	19.5613	634.726				
25	SPHR	12.2262	396.714				

Analisis Arus Saluran, Jatuh Tegangan dan Rugi – Rugi Daya Jaringan Distribusi 20kV pada Penyulang KRNI

1	2	3	4
26	SDPI	16.9086	548.649
27	ВНЈИ	4.6977	152.430
	Total	171.3986	5561.543

Berdasarkan Tabel 6, Kenyataannya, adanya rugi daya pada penyediaan energi listrik adalah sesuatu yang selalu ada. Meski demikian rugi daya yang terjadi dalam proses penyaluran dan distribusi energi listrik merupakan suatu pemborosan energiapabila tidak dikendalikan secara optimal.

4. Kesimpulan

Arus saluran yang terukur akan terpengaruhi oleh Panjang pendeknya saluran. Semakin Panjang saluran maka arus saluran akan semakin kecil, dan semakin pendek saluran maka arus salurannya akan semakin besar. Hal itu dapat dilihat berdasarkan data dan analisis didapatkan nilai arus saluran pada setiap gardu distribusi dalam penyulang KRNI Ketika saluran hanya sampai pada gardu BHJ maka arus saluran yang dihasikan adalah 101 A. Berdasarkan perhitungan, pada penyulang KRNI terdapat tegangan jatuh pada setiap saluran, namun tegangan jatuh tersebut masih dalam batas wajar sesuai dengan ketentuan S XYZnomor 72 tahun 1987 yaitu <5%. Hal ini terbukti berdasarkan data perhitungan, salah satunya Saluran GI-BHJ memiliki drop tegangan sebesar 511,25 V atau sebesar 4,4%. Pada penyulang KRNI ini memiliki Rugi – rugi daya yang tidak terlalu besar bahkan cenderung kecil,hal ini dikarenakan impedansi yang dimiliki oleh kabel tidakterlalu besar sehingga tidak terlalu menghambat . Berdasarkan S XYZ No.72 tahun 1987 rugi – rugi daya yang dibolehkan <10%. hal ini terbukti pada: Gardu BHJ memiliki rugi – rugi daya sebesar $\Delta P = 2,23$ Watt dengan Z= 1,599+ j2,445. PadaGardu distribusi dalam asuhan penyulang KRNI ini juga terdapat rugi biaya. Hal inidikarenakan adanya rugi rugi daya yang terjadi pada setiap gardu distribusi. hal initerbukti pada Gardu BHJ memiliki rugi biaya sebesar Rp. 72.387 selama 24 jam.

UCAPAN TERIMA KASIH

Disini saya ingin mengucapkan terimakasih kepada pihak terkait yang sudahmembantu penulis untuk membantu penelitian ini. Terutama untuk pihak instansi ULP XYZ beserta pihak yang terkait.

DAFTAR PUSTAKA

Albaroka, G. (n.d.). Analisis Rugi Daya Pada Jaringan Distribusi Penyulang BarataJaya Area Surabaya Selatan Menggunakan Software Etap 12.6. Jurnal TeknikElektro, 6(2). Hontong, N. J., Tuegeh, M., & Patras, L. S. (2015). Analisa Rugi - Rugi Daya PadaJaringan Distribusi Di PT. XYZPalu. Jurnal Teknik Elektro dan Komputer, 4(1), 64-71. doi:https://doi.org/10.35793/jtek.4.1.2015.6739

Arifin, Haryanto

- Kastio Putri, Mayang Sari (2020). Analisa Jatuh Tegangan Pada Penyulang F6 selayodi PT.PLN (Persero) Area Solok. Jakarta. Institut Teknologi PLN.
- Nur Setiawan, Deddi(2018). Analisis Susut Daya Listrik Pada Penyulang 20 KV GarduInduk Wonogiri.
- Aris Munandar, Kuwahara S. Teknik Tenaga Listrik Jilid 2. Jakarta: PT. Prandya Paramita. 1993.
- Pitoy, Senando Rangga (2016) Analisis Rugi-Rugi Energi Listrik Pada Jaringan Distribusi. Mahasiswa thesis, Politeknik Negeri Manado.