Usulan Sistem Persediaan Bahan Baku Spanduk Menggunakan Model Joint Replenishment Di PT XYZ

ESTER BERLIAN APRILIA^{1*}, FIFI HERNI MUSTOFA¹

¹Program Studi Teknik Industri, Fakultas Teknologi Industri, Institut Teknologi Nasional Bandung

Email: esterberlian0@mhs.itenas.ac.idi

Received 01 09 2023 | Revised 08 09 2023 | Accepted 08 09 2023

ABSTRAK

PT XYZ merupakan perusahaan yang bergerak di bidang digital printing dengan nama merk dagang Isillo. Isillo melayani cetak berbagai macam produk dengan produk yang paling banyak dipesan adalah spanduk. Pemesanan bahan baku kepada supplier dilakukan sesuai dengan jumlah permintaan konsumen yang bersifat stokastik. Perusahaan melakukan pemesanan bahan baku secara terpisah untuk setiap jenisnya sehingga menyebabkan tingginya biaya pesan maupun meningkatnya biaya simpan. Metode yang digunakan untuk penelitian yaitu model persediaan stokastik untuk joint replenishment dengan kasus multi item (Eynan & Kropp, 1998). Pengolahan data metode joint replenishment menghasilkan nilai interval waktu pemesanan optimal (T_i^*) selama 33 hari dengan frekuensi pemesanan sebanyak 8 kali dalam setahun. Penghematan total biaya persediaan keseluruhan yang dihasilkan yaitu sebesar Rp 157.528.843,- dalam presentase sebesar 4,053%. Metode ini akan membantu perusahaan dengan melakukan penggabungan pemesanan bahan baku dari satu supplier sehingga dapat meminimasi ongkos pesan dan ongkos persediaan karena setiap interval waktu pemesanan akan dikontrol.

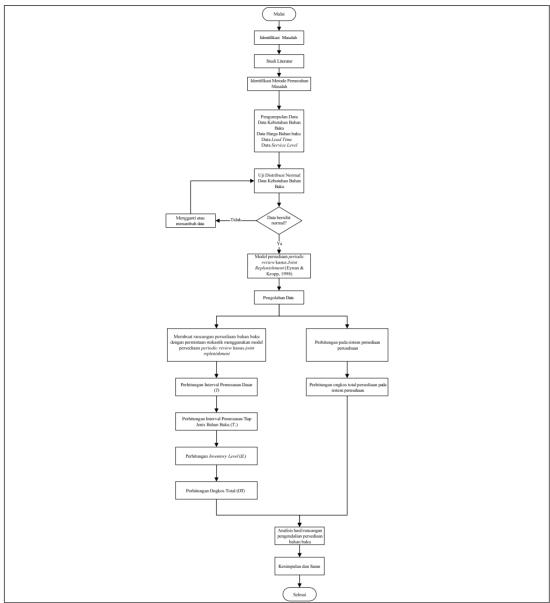
Kata kunci: Interval Pemesanan; Joint Replenishment; Pengendalian Persediaan; Stokastik

ABSTRACT

PT XYZ is a company engaged in digital printing with the trademark name Isillo. Isillo serves the printing of various kinds of products with the most ordered products being banners. Ordering raw materials to suppliers is carried out according to the number of stochastic consumer requests. The company orders raw materials separately for each type, causing high order costs and increased storage costs. The method used for research is a stochastic inventory model for joint replenishment with a multi-item case (Eynan & Kropp, 1998). Data processing of the joint replenishment method results in an optimal order time interval (Ti*) value of 33 days with an order frequency of 8 times a year. The resulting savings in total inventory costs amounted to Rp 157,528,843, - in a percentage of 4.053%. This method will help the company by combining ordering raw materials from one supplier so as to minimize order costs and inventory costs because each order time interval will be controlled.

Keywords: Inventory Control; Joint Replenishment; Ordering Interval; Stochastic

1. PENDAHULUAN


PT XYZ merupakan perusahaan yang bergerak di bidang digital printing, offset, advertising dan perdagangan umum dengan nama merk dagang Isillo. Seiring dengan perkembangan teknologi cetak digital, perusahaan Isillo terpacu untuk mengembangkan bidang usahanya menjadi lebih luas dengan peralatan yang memadai dan mutakhir, serta tenaga kerja yang profesional. Isillo melayani cetak berbagai macam produk yaitu spanduk, bendera, label, scraft, baligo, banner, kartu nama, stiker, buku, majalah, kemasan produk, paperbag, poster, notebook, flyer, wall art canvas, stasioner bisnis, dan lain-lain.

Produk yang paling banyak dipesan pada perusahaan ini adalah produk spanduk. Produk spanduk diproduksi menggunakan 3 jenis bahan baku yaitu flexi china, flexi korea, dan albatros doublematte ecosolvent. Sistem produksi yang diterapkan oleh perusahaan Isillo bersifat make to order, sehingga pemesanan bahan baku yang digunakan untuk mencetak produk dilakukan sesuai jumlah permintaan konsumen. Permintaan produksi bersifat stokastik karena jumlah permintaan yang selalu berubah-ubah setiap pemesanannya. Pemesanan bahan baku kepada supplier dilakukan secara terpisah untuk setiap jenisnya dengan menggunakan kendaraan mobil box milik supplier sehingga ongkos pesan yang dikeluarkan untuk bahan baku sangat besar. Kondisi pemesanan saat ini menyebabkan terjadinya kelebihan maupun kekurangan ketersediaan bahan baku sehingga biaya persediaan atau biaya pesan akan meningkat. Perusahaan mengalami keterlambatan pemenuhan pesanan kepada konsumen sehingga pemesanan ulang perlu dilakukan secara terpisah untuk jumlah bahan baku yang kurang dengan lead time selama 3 hari.

Berdasarkan permasalahan yang terjadi, maka perusahaan perlu melakukan perbaikan dalam sistem pengendalian persediaan bahan bakunya dengan melakukan penggabungan dalam pemesanan bahan baku kepada satu supplier tersebut. Salah satu metode yang dapat digunakan untuk memperbaiki sistem pada perusahaan yaitu model persediaan stokastik untuk joint replenishment dengan kasus multi item (Eynan & Kropp, 1998). Metode ini akan memperbaiki sistem pengendalian persediaan yang dapat membantu perusahaan dalam ketepatan persediaan bahan baku. Ketersediaan bahan baku yang tepat akan meminimasi ongkos pesan maupun ongkos persediaan karena setiap interval waktu untuk pemesanan akan dikontrol. Pemesanan seluruh jenis bahan baku dari satu supplier yang sama akan dilakukan secara gabungan sehingga proses produksi tidak akan terhambat dan menjadi lebih efisien.

2. METODOLOGI

Urutan proses dan langkah-langkah yang dilakukan untuk memecahkan masalah pada penelitian ini dapat dilihat dalam diagram alir Gambar 1.

Gambar 1. Langkah-Langkah Penelitian

2.1 Uji Distribusi Kolmogorov-Smirnov

Langkah-langkah yang dilakukan dalam melakukan uji distribusi pada bahan baku dapat dilihat sebagai berikut.

- 1. Penentuan Hipotesa:
 - H0: data berdistribusi normal
 - H1: data tidak berdistribusi normal
- 2. Penentuan Taraf Keberartian (a)
- 3. Penentuan Daerah Kritis = $D_{tabel} = D_{a;n}$
- 4. Mengurutkan data yang akan diolah dari jumlah yang paling kecil.
- 5. Menentukan nilai rata-rata (μ) dan standar deviasi (σ)

$$\mu = \frac{\sum Xi}{n} \tag{1}$$

$$\sigma = \frac{\sqrt{\sum (Xi - \mu)^2}}{n - 1} \tag{2}$$

Dimana,

Xi: data permintaan ke-i

n = jumlah data

6. Melakukan perhitungan $F_{s(x)}$

$$F_{s(x)} = fKumulatif/\sum fi$$
 (3)

7. Melakukan perhitungan Zi

$$Zi = \frac{xi - \bar{x}}{\sigma}$$
 (4)

- 8. Melakukan Perhitungan Ft (x) = penentuan hasil peluang dari tabel distribusi normal.
- 9. Melakukan Perhitungan D

$$D = |F_{s(x)} - F_{t(x)}|$$
 (5)

- 10. Penentuan nilai D_{max} = nilai terbesar dari D
- 11. Membuat kesimpulan dengan melakukan perbandingkan nilai D_{max} dengan D_{tabel} , D_{max} < D_{tabel} maka terima Ho, cukup alasan untuk menerima bahwa data berdistribusi normal.

2.2 Perancangan Sistem Persediaan

Langkah-langkah dalam merancang sistem persediaan bahan baku menggunakan model persediaan periodic review yaitu sebagai berikut.

1. Penentuan Interval Pemesanan Dasar atau Basic Cycle (T)

Pada model periodic review dengan pemesanan gabungan (joint replenishment) salah satu variabel keputusan yang dihasilkan merupakan interval pemesanan (T). Langkah langkah penentuan interval antar pemesanan yaitu sebagai berikut.

Langkah 1: Menentukan nilai T_i* dengan menggunakan persamaan:

$$T_0 = \sqrt{\frac{2(A+a_1)}{h_1 D_1}} \tag{6}$$

$$T_{i} = \sqrt{\frac{2 a_{i_{z_{i}\sigma_{i}}}}{h \left(D + \frac{2 a_{i_{z_{i}\sigma_{i}}}}{\sqrt{k_{i}T_{0} + L_{i}}}\right)}}$$

$$(7)$$

Langkah 2: Identifikasi nilai T_i^* item yang memil T_i^* paling kecil dinotasikan sebagai item 1, dengan nilai $k_1 = 1$. Dan item lainnya dinotasikan sebagai item 2,3,4....n

Langkah 3: Tentukan nilai T dengan menggunakan persamaan:

$$T = \sqrt{\frac{\frac{2(A+a1)}{h_i(D_1 + \frac{z \underline{1}\sigma \underline{1}}{\sqrt{T_{0+}L_1}})}}{\frac{z}{\sqrt{T_{0+}L_1}}}}, \text{ dengan}$$
 (8)

$$T_0 = \sqrt{\frac{2(A+a_1)}{h_1 D_1}}$$
 (9)

Langkah 4: Cari nilai k_i , jika $k_i = q$, maka nilai q harus memenuhi persamaan:

$$\sqrt{\frac{k-1}{k}} \leq \frac{T_{i}^{*}}{i} \leq \sqrt{k+1} k \tag{10}$$

Langkah 5: Tentukan nilai T dengan menggunakan persamaan:

$$T = \sqrt{\frac{\sum_{i=1}^{n} a_{i}}{\sum_{k} h \ k \ (D + \frac{\sum_{i=1}^{n} a_{i}}{\sum_{k} T_{0} + L_{i}}}}, \text{ dengan}$$

$$(11)$$

$$T_0 = \sqrt{\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} h_i k_i D_i}}$$
(12)

Langkah 6: Hitung ongkos total gabungan (OT) dengan menggunakan persamaan:

$$z_i\sigma_i h_i \sqrt{k_i T + L_1}$$
 (13)

Ulangi langkah 4 dan 5 sehingga ongkos total persediaan gabungan yang dihasilkan pada setiap iterasi menghasilkan nilai yang sama atau hampir sama.

2. Penentuan Interval Pemesanan Tiap Jenis Bahan Baku (T_i^*) Penentuan interval untuk pemesanan setiap jenis bahan baku (T_i^*) dapat dihitung dengan menggunakan persamaan: $T_i = k_i \times T$

3. Penentuan Inventory Level (IL) dan Safety Stock
Besarnya safety stock item bahan baku selama interval pemesanan dan lead
time menggunakan persamaan:

Safety Stock item i =
$$z_i \sigma_i \sqrt{T_i + L_i}$$
 (15)

(14)

Perhitungan inventory level tiap jenis bahan baku dihitung dengan menggunakan persamaan:

$$(IL_i) = D_i \times (k_i T \times L_i) + Z_{i \times} \sigma_i (\sqrt{T_i + L_i})$$
(16)

4. Perhitungan Ongkos Total Persediaan Gabungan (OT)
Ongkos total persediaan gabungan (OT) dari keseluruhan diperoleh dengan
menggunakan persamaan sebagai berikut.

OT
$$= - + \frac{A}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{D}{i} \frac{Th}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2ki}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2ki}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + z \sigma h \sqrt{T + L} + \sum_{i=2ki}^{n} \frac{DTk h}{[i + z \sigma h \sqrt{k} T + L]}$$

$$T = - + \frac{i}{i} + \frac{\sum_{i=2ki}^{n} + \frac{ai}{i}}{T} + \frac{i}{i} \frac{i}{i} + \frac{i}{i} \frac{i} \frac{i}{i} + \frac{i}{i} \frac{i}{i} + \frac{i}{i}$$

3. HASIL DAN PEMBAHASAN

3.1 Uji Distribusi Kolmogorov-Smirnov

Hasil uji distribusi Kolmogorov-Smirnov untuk seluruh bahan baku dapat dilihat pada rekapitulasi dalam Tabel 1.

Tabel 1. Rekapitulasi Hasil Uji Distribusi Kolmogorov-Smirnov Setiap Bahan Baku

No	Jenis Bahan Baku	Dmax	Dtabel	Kesimpulan
1	Flexi China 340GR	0,361	0,375	(Dmax <dtabel) alasan="" cukup="" h0,="" menerima<br="" terima="">bahwa berdistribusi normal</dtabel)>
2	Flexi Korea	Flexi Korea 0,135 0,3		(Dmax <dtabel) alasan="" cukup="" h0,="" menerima<br="" terima="">bahwa berdistribusi normal</dtabel)>
3	Albatros Doublematte Ecosolvent	0,079	0,375	(Dmax <dtabel) alasan="" cukup="" h0,="" menerima<br="" terima="">bahwa berdistribusi normal</dtabel)>

3.2 Perancangan Sistem Persediaan

Dalam merancang sistem persediaan bahan baku perlu melakukan perhitungan interval pemesanan dasar (T), interval pemesanan tiap bahan baku (T_i), inventory level (IL_i), dan ongkos total gabungan (OT).

1. Penentuan Nilai Interval Pemesanan Dasar/Basic Cycle (T) Penentuan nilai interval pemesanan dasar membutuhkan data-data bahan baku, yaitu data biaya pesan, data ongkos simpan, data rata-rata kebutuhan bahan baku, standar deviasi, service level, dan lead time. Data-data dari bahan baku yang digunakan dapat dilihat pada rekapitulasi dalam Tabel 2.

Tabel 2. Rekapitulasi Data-Data Bahan Baku Yang Digunakan

No	Jenis Bahan Baku	Ongkos Pesan Mayor (A)	Ongkos Pesan Minor (a _i)	Ongkos Simpan (hi) (Bulan)		Rata-rata (d _i) (Roll /Bulan)	Koefisien Normal (Z_i)	Standar Deviasi (σ_i)	Lead Time (L_i) (Bulan)
1	Flexi China 340GR	Rp 16.540,00	Rp 325.000,00	Rp	6.533	50,167	1,645	2,443296333	0,125
2	Flexi Korea	Rp 16.540,00	Rp 325.000,00	Rp	19.600	22,750	1,645	2,179449472	0,125
3	Albatros Doublematte Ecosolvent	Rp 16.540,00	Rp 325.000,00	Rp	4.200	53,500	1,645	4,056420276	0,125

Iterasi 1

Langkah 1: Menentukan nilai T_{i*} setiap jenis-jenis bahan baku dengan menggunakan persamaan (6) dan (7)

Langkah 2: Mengidentifikasi nilai T_{i^*} yang paling kecil. Bahan baku dengan nilai T_{i^*} yang terkecil dinotasikan sebagai item 1 dengan nilai $k_i = 1$ dan untuk bahan baku lainnya berturut-turut dinotasikan sebagai item 2, dan 3. Rekapitulasi hasil perhitungan nilai T_{i^*} dengan urutan item mulai dari T_{i^*} yang paling kecil untuk seluruh jenis bahan baku dapat dilihat dalam Tabel 3.

Tabel 3. Rekapitulasi Data-Data Bahan Baku Yang Digunakan

No	Jenis Bahan Baku	T_0	$T_i *$
item 1	Flexi Korea	1,207	1,133
item 2	Flexi China 340GR	1,408	1,365
	Albatros		
item 3	Doublematte	1,701	1,627
	Ecosolvent		

Langkah 3: Menentukan nilai T dengan menggunakan persamaan (8) dan (9)

Langkah 4: Menentukan nilai k item yang lainnya yaitu k_2 , dan k_3 . Penentuan nilai k_i dilakukan dengan trial and error, sehingga hasil dari nilai k_i dapat memenuhi persamaan (10).

Langkah 5: Menentukan nilai T dengan menggunakan persamaan (11) dan (12). Data-data yang dibutuhkan untuk melakukan perhitungan T_0 dan T pada iterasi 1 dapat dilihat dalam Tabel 4.

Tabel 4. Perhitungan T_0 dan T Pada Iterasi 1

Bahan Baku	Pesa	ngkos n Mayor (A)		os Pesan nor (ai)	Ong	kos Simpan (hi)	Rata-Rata (Di) (Roll /Bula n)	Koefisien Normal (Zi)	Standar Deviasi (ơi)	Lead Time (Li) (Bulan)	k_i	To (Bulan)	T (Bulan)
Flexi China 340GR	Rp	16.540	Rp	325.000	Rp	6.533	50,167	1,645	2,443	0,125	1		
Flexi Korea	Rp	16.540	Rp	325.000	Rp	19.600	22,750	1,645	2,179	0,125	1	1,409	1,343
Albatros Doublematte Ecosolvent	Rp	16.540	Rp	325.000	Rp	4.200	53,500	1,645	4,056	0,125	1	1,409	1,343

Langkah 6: Menentukan nilai ongkos total (OT) dengan menggunakan persamaan (17) diperoleh nilai ongkos total sebesar Rp. Rp 2.073.975,-. Data-data yang dibutuhkan untuk melakukan perhitungan ongkos total pada iterasi 1 dapat dilihat dalam Tabel 5.

Tabel 5. Data-Data Perhitungan Ongkos Total Pada Iterasi 1

Bahan Baku	Mi	os Pesan nor (ɑi) /Pesan)	_	ngkos pan (hi) (Rp)	Rata-Rata (kg/bulan) (Di)	Koefisien Normal (Zi)	Standar Deviasi (σi)	ki		<u>a</u> i ki	Т
Katun	Rp	325.000	Rp	6.533	50,167		2,443	1	Rp	325.000	
Akrilik	Rp	325.000	Rp	19.600	22,750	1,645	2,179	1	Rp	325.000	1,343
Polyester	Rp	325.000	Rp	4.200	53,500		4,056	1	Rp	325.000	

Iterasi 2

Iterasi 2 dimulai dari langkah 4, yaitu langkah yang dilakukan untuk menentukan nilai k_2 , dan k_3 . Penentuan nilai k_i dilakukan dengan trial and error, sehingga hasil dari nilai k_i dapat memenuhi persamaan (10).

Langkah 5: Menentukan nilai T dengan menggunakan persamaan (11) dan (12). Data-data yang dibutuhkan untuk melakukan perhitungan T_0 dan T pada iterasi 2 dapat dilihat dalam Tabel 6.

Tabel 6. Perhitungan T_0 dan T Pada Iterasi 2

Bahan Baku	Pesa	ngkos n Mayor (A)	_	os Pesan nor (ai)	Ong	kos Simpan (hi)	Rata-Rata (Di) (Roll /Bula n)	Koefisien Normal (Zi)	Standar Deviasi (ơi)	Lead Time (Li) (Bulan)	k_i	To (Bulan)	T (Bulan)
Flexi China 340GR	Rp	16.540	Rp	325.000	Rp	6.533	50,167	1,645	2,443	0,125	1		
Flexi Korea	Rp	16.540	Rp	325.000	Rp	19.600	22,750	1,645	2,179	0,125	1	1,409	1,343
Albatros Doublematte Ecosolvent	Rp	16.540	Rp	325.000	Rp	4.200	53,500	1,645	4,056	0,125	1	1,409	1,343

Langkah 6: Menentukan nilai ongkos total (OT) dengan menggunakan persamaan (17) diperoleh nilai ongkos total sebesar Rp. Rp 2.073.975,-. Data-data yang dibutuhkan untuk melakukan perhitungan ongkos total pada iterasi 1 dapat dilihat dalam Tabel 7.

Tabel 7. Data-Data Perhitungan Ongkos Total Pada Iterasi 1

							. • • • • •				
Bahan Baku	Mi	kos Pesan nor (ai) /Pesan)	_	ngkos pan (hi) (Rp)	Rata-Rata (kg/bulan) (Di)	Koefisien Normal (Zi)	Standar Deviasi (ơi)	ki		$rac{a_i}{k_i}$	т
Katun	Rp	325.000	Rp	6.533	50,167		2,443	1	Rp	325.000	
Akrilik	Rp	325.000	Rp	19.600	22,750	1,645	2,179	1	Rp	325.000	1,343
Polyester	Rp	325.000	Rp	4.200	53,500		4,056	1	Rp	325.000	

Nilai ki yang diperoleh pada iterasi 1 dan iterasi 2 bernilai sama. Hasil nilai T dan ongkos total yang diperoleh dari iterasi 1 dan iterasi 2 juga bernilai sama sehingga perhitungan iterasi berhenti. Hasil nilai T dan ongkos total dapat dilihat pada rekapitulasi dalam Tabel 8.

Tabel 8. Rekapitulasi Nilai T dan Ongkos Total Setiap Iterasi

Iterasi	Т	ОТ		
1	1,343	Rp	2.073.975	
2	1,343	Rp	2.117.083	
3	1,343	Rp	2.363.723	

2. Penentuan Interval Pemesanan Tiap Item/Bahan Baku (T_i)

Penentuan besarnya nilai interval pemesanan setiap bahan baku diperoleh dengan menggunakan persamaan (14). Besarnya nilai interval pemesanan setiap bahan baku dapat dilihat pada rekapitulasi dalam Tabel 9.

Tabel 9. Rekapituluasi Nilai Interval Pemesanan Setiap Bahan Baku

Bahan Baku	ki	T	Ti
Katun	1	1,343	1,343
Akrilik	1	1,343	1,343
Polyester	1	1,343	1,343

3. Penentuan Inventory Level (IL_i) dan Safety Stock

Nilai inventory level dan safety stock setiap bahan baku diperoleh dengan menggunakan persamaan (15) dan (16). Besarnya nilai inventory level dan safety stock dapat dilihat pada rekapitulasi dalam Tabel 10.

Tabel 10. Rekapitulasi Nilai Inventory Level dan Safety Stock Setiap Bahan Baku

Bahan Baku	Safety Stock	Inventory Level
Katun	4,870	78,532
Akrilik	4,344	37,749
Polyester	8,085	86,642

4. Penentuan Ongkos Total Persediaan Gabungan (OT)

Ongkos total persediaan gabungan (OT) dari keseluruhan diperoleh dengan menggunakan persamaan (17) diperoleh nilai ongkos total sebesar Rp. Rp 2.073.975,-.

3.3 ANALISIS RANCANGAN SISTEM PERSEDIAAN BAHAN BAKU

3.3.1 VERIFIKASI ONGKOS TOTAL PERSEDIAAN HASIL RANCANGAN TERHADAP DATA MASA LALU

Berdasarkan hasil rancangan persediaan menggunakan metode perancangan, diperoleh data-data yaitu nilai interval pemesanan (T_i) untuk setiap jenis bahan baku yaitu sebesar 1,343 bulan atau 33 hari dan nilai inventory level (IL_i) untuk setiap jenis bahan baku. Lead time untuk seluruh bahan baku bernilai sama yaitu selama 3 hari. Hasil perhitungan total biaya-biaya persediaan berdasarkan metode perancangan dapat dilihat dalam Tabel 11.

Tabel 11.Total Biaya Persediaan Berdasarkan Uji Verifikasi Metode Perancangan

No	Jenis Biaya	Bia	aya (Rp/Tahun)
1	Biaya Simpan	Rp	10.265.517
2	Biaya Pesan	Rp	2.732.320
3	Biaya Pembelian	Rp	3.716.480.000,000
Total Biaya Persediaa	Rp	3.729.477.837	

Total biaya persediaan secara keseluruhan berdasarkan uji verifikasi menggunakan metode perancangan yaitu sebesar Rp. 3.729.477.837,- selama 1 tahun.

3.3.2 VERIFIKASI ONGKOS TOTAL PERSEDIAAN METODE PERUSAHAAN TERHADAP DATA MASA LALU

Sistem pemesanan dan pengendalian persediaan bahan baku pada perusahaan Isillo masih dilakukan berdasarkan intuisi sesuai dengan jumlah permintaan konsumen. Lead time pemesanan bahan baku perusahaan yaitu selama 3 hari. Hasil perhitungan total biaya-biaya persediaan berdasarkan metode perusahaan dapat dilihat dalam Tabel 12.

Tabel 12.Total Biaya Persediaan Berdasarkan Uji Verifikasi Metode Perusahaan

No	Jenis Biaya	Biaya (Rp/Tahun)			
1	Biaya Simpan	Rp	8.145.551		
2	Biaya Pesan	Rp	20.833.940		
3	Biaya Pembelian	Rp	3.858.080.000,000		
Total Biaya Pe	rsediaan (Rp/Tahun)	Rp	3.887.059.491		

Total biaya persediaan secara keseluruhan berdasarkan uji verifikasi menggunakan metode perusahaan yaitu sebesar Rp 3.887.059.491,- per tahun.

3.4 ANALISIS PERBANDINGAN HASIL SISTEM PERSEDIAAN METODE PERANCANGAN DENGAN METODE PERUSAHAAN

Melalui metode perancangan menghasilkan biaya total persediaan gabungan sebesar Rp. 3.729.477.837,- per tahun, sedangkan perusahaan menghasilkan total biaya persediaan gabungan sebesar Rp 3.887.059.491,- per tahun. Sistem persediaan bahan baku hasil metode perancangan menghasilkan total biaya persediaan gabungan yang lebih kecil dibandingkan dengan sistem persediaan yang digunakan oleh perusahaan. Penghematan yang dihasilkan kepada perusahaan yaitu sebesar Rp 157.581.654,- atau dengan presentase sebesar 4,054%. Metode perancangan joint replenishment akan sangat membantu perusahaan terutama jika perusahaan belum menggunakan metode khusus untuk sistem pemesanan bahan bakunya. Perbandingan biaya-biaya perusahaan dari metode perancangan dan metode perusahaan dapat dilihat dalam Tabel 13.

Tabel 13. Rekapitulasi Perbandingan Biaya-Biaya Persediaan

Jenis Biaya (Rp/Tahun)	Perusahaan		Perancangan	
Biaya Simpan	Rp	8.145.551	Rp	10.265.517
Biaya Pesan	Rp	20.833.940	Rp	2.732.320
Biaya Total Persediaan Keseluruhan	Rp	3.887.059.491	Rp	3.729.477.837
Selisih Biaya Total Persediaan	Rp			157.581.654
Persentase Penghematan	4,054%			

4. KESIMPULAN

Kesimpulan diperoleh dari hasil pengolahan data dan analisis yang telah dilakukan, yaitu:

- 1. Model persediaan yang digunakan yaitu Model-P atau periodic review yang merupakan model pemesanan gabungan (joint replenishment). Melalui model ini nilai interval pemesanan (T) untuk setiap jenis bahan baku bernilai sama. Nilai interval pemesanan (T) yang diperoleh yaitu 33 hari.
- 2. Frekuensi pemesanan per tahun pada perusahaan berbeda-beda untuk setiap jenis bahan bakunya karena perusahaan tidak melakukan sistem pemesanan gabungan. Total frekuensi pemesanan yang dilakukan perusahaan dalam 1 tahun mencapai 22 kali pemesanan. Sedangkan total frekuensi pemesanan dengan menggunakan metode perancangan dalam 1 tahunnya sebanyak 8 kali pemesanan untuk setiap bahan bakunya.
- 3. Total biaya persediaan yang diperoleh dengan menggunakan metode perusahaan sebesar Rp3.887. 059.491per tahun dan total biaya persediaan dengan metode peracangan sebesar Rp. 3.729.477.837,-per tahun. Penghematan yang dihasilkan kepada perusahaan yaitu sebesar Rp 157.581.654,- atau dengan presentase sebesar 4,054%.

DAFTAR PUSTAKA

Bahagia, S. N. (2006). Sistem Inventori. Bandung: ITB

Eynan, A., & Kropp D. H. K. (1998). Periodic Review And Joint Replenishment In Stochastic Demand Environments. Washington: IIE Transaction.

Noh, J. S., Kim, J. S., & Sarkar, B. (2019). Stochastic joint replenishment problem with quantity discounts and minimum order constraints. Operational Research International Journal, 19, 151-178. Springer

Silver, E. A., & Peterson R. (1985). Decision System for Inventory Management and Production Planning, 2nd Edition. New York: John Wiley and Son.

Susanto, E., Putri, M. A, & Zaini, E. (2020). Rancangan Sistem Persediaan Bahan Baku Menggunakan Model Persediaan Stochastic Joint Replenishment. Jurnal Ekonomi dan Bisnis, 7(2), 147-154.

Tersine, R.J. (1994). Principle of Inventory and Materials Management, 2nd Ed. Elsevier Science Publishing Co. Inc: New York