ANALISIS RISIKO KEGAGALAN UNTUK PROSES PRODUKSI FURNITUR DENGAN METODE FMEA-FTA TERINTEGRASI

Panca Septiansah^{1*}, Fahmi Arif¹

¹Institut Teknologi Nasional Bandung E-mail: pancasyah123@gmail.com Received 21 08 2023 | Revised 28 08 2023 | Accepted 28 08 2023

ABSTRAK

Manajemen risiko pada perusahaan industri furnitur sangatlah penting untuk menghindari pemborosan sumber daya dan kehilangan pelanggan yang disebabkan oleh kegagalan dalam sistem produksi. Analisis risiko juga penting untuk menghindari kegagalan yang mungkin terjadi dalam sistem produksi. Dalam penelitian ini, metode FMEA-FTA terintegrasi digunakan untuk menganalisis proses produksi furnitur di XYZ. Selama periode Januarihingga Maret 2023 perusahaan mengalami kegagalan produksi ditahapan finishing, hinggamenghasilkan produk return sebanyak 5 hingga 10 produk. Perusahaan belum mengetahui terkait jenis risiko yang dihadapi pada fasilitas produksi furnitur. FMEA-FTA diterapkan pada proses produksi furnitur untuk mengidentifikasi risiko kegagalan utama dan mengurutkan semua risiko terkait dengan potensi kegagalan produksi. Terdapat 31 akar penyebab kegagalan yang teridentifikasi dalam fasilitas produksi furnitur. Hasil yang diperoleh dari penerapan metode FMEA-FTA menunjukkan bahwa informasi tersebut dapat dijadikan langkah pencegahan dan perbaikan untuk meminimasi kegagalan difasilitas produksi furnitur.

Kata kunci: Analisis Risiko, Produk Return, FMEA-FTA, Industri Furnitur.

ABSTRACT

Risk management in the furniture industry company is crucial to avoid wasting resource and losing customer caused by failures in the production system. Risk analysis is also important to prevent potential failures in the production system. In this study, an integrated FMEA-FTA method is used to analyze the furniture production process at XYZ. During the period from January to March 2023, the company experienced production failures in the finishing stage, resulting in the return of 5 to 10 products. The company was not aware of thetypes of risks faced in the furniture production facility. FMEA-FTA is applied to the furniture production process to identify major failure risks and prioritize all risks related to potential production failures. There are 31 root causes of failure identified in the furniture production facility. The results obtained from the application of the FMEA-FTA method indicate that this information can be used as preventive and corrective measures to minimize failures in the furniture production facility.

Keywords: Risk Analysis, Product Return, FMEA-FTA, Furniture Industry.

1. PENDAHULUAN

Indsutri furnitur di Indonesia mengalami perkembangan dalam beberapa tahun terkahir sehingga memberikan dampak terhadap perkembangan teknologi. Tetapi pengembangan sentra Indsutri Kecil Menengah (IKM) furnitur belum merata khusus nya diprovinsi Jawa Barat. Menurut Mutlu (2019) sangat penting bagi perusahaan dalam mempertahankan posisi perusahaan di pasar, meningkatkan daya saing di pasar, dan memberikan kontribusi pada pengembangan ekonomi negara.

XYZ merupakan sebuah perusahaan yang aktif dalam sektor industri furnitur. Produk yang dihasilkan berupa indoor furniture seperti dipan, bufet, bar table, sliding glass door, lemari, dan rak buku. Sistem produksi yang digunakan oleh perusahaan yaitu maketo order. Selama periode Januari hingga Maret 2023 perusahaan memproduksi 103 produk furnitur dengan rata-rata produk return sebanyak 5 hingga 10 produk. Hal tersebut mengakibatkan perusahaan mengalami kerugian dari segi sumber daya (waktu, tenaga, dana).Oleh karena itu diperlukan upaya pencegahan terkait dengan risiko yang dihadapi perusahaan pada fasilitas produksi furnitur.

Penerapan metode FMEA-FTA terintegrasi pada proses produksi furnitur bertujuan untuk mengindentifikasi risiko yang menjadi faktor utama penyebab kegagalan pada proses produksi furnitur dan melakukan penilaian risiko terhadap dampak kegagalan yang berpotensi menyebabkan produk menjadi tidak layak untuk dikirim kepada pelanggan.

2. METODOLOGI

Dalam penelitian ini, metode FMEA-FTA diintegrasikan dan digunakan untuk menganalisis risiko kegagalan untuk proses produksi furnitur, untuk menentukan akar penyebab kegagalan, dan mengurutkan dampak kegagalan dari yang terkecil hingga yang terbesar. Adapun langkahlangkah dalam menggunakan FMEA-FTA terintegrasi:

- Menentukan Ruang Lingkup Analisis.
 Variabel atau proses yang berkaitan dengan risiko kegagalan pada fasilitas produksi furnitur.
- 2. Mengidentifikasi Potensi Failure Mode Kemungkinan faktor utama penyebab kegagalan berdasarkan variabel atau proses.
- 3. Mengidentifikasi Potensi Akar Penyebab Kegagalan (Root Causes Failure)
 Kemungkinan akar penyebab kegagalan pada setiap failure mode dianalisis menggunakan FTA. Setelah itu menghubungkan akar penyebab kegagalan dan failure mode kedalam fault tree diagram. Membuat diagram pohon untuk menghubungkan antara failure mode dan root causes dengan event symbol dan logic gate symbol seperti pada Tabel 2.1 dan Tabel 2.2 Berikut

Tabel 2.1 Event Symbol (FTA)

Event Symbol	Keterangan		
	Basic Event		
	Dasar inisiasi kesalahan yang tidak membutuhkan pengembangan yang		
	lebih jauh.		
	Conditioning Eventy		
	Kondisi spesifik yang dapat diterapkan ke berbagai gerbang logika.		
	Undevelopment Event		
	Event yang tidak dapat dikembangkan lagi karena informasi tidak		
	tersedia.		
	Intermediate Event		
	Event yang terjadi karena satu atau lebih penyebab melalui logic gate.		

Sumber: Fault Tree Hanbook (1981)

Tabel 2.2 Gate Symbol (FTA)

Gate Symbol	ite Symbol Keterangan		
Gerbang AND Kesalahan muncul akibat semua input masalah yang terjac			
	Gerbang OR Kesalahan muncul akibat salah satu input masalah yang terjadi		

Sumber: Faultree Handbook (1981)

4. Menentukan Severity

Nilai severity ditentukan berdasarkan efek kegagalan dengan nilai skala 1-10. Skala yang digunakan berdasarkan rujukan dari Stamatis (2015) yang disesuaikan dengan kondisi perusahaan. Skala penilaian severity dapat dilihat pada Tabel 2.3 berikut.

Tabel 2.3 Severity

l abel 2.3 Severity				
Efek	Nilai	Kriteria		
Tidak ada	1	Tidak ada efek kegagalan yang berpengaruh terhadap pelanggan.		
Sangat		Gangguan sangat kecil pada jalur produksi. Sebagian kecil produk		
Minor	2	mungkin perlu dirework. Defect atau kesalahan diperhatikan oleh		
1 111101		pelanggan yang diskriminatif.		
	_	Gangguan kecil pada jalur produksi. Sebagian kecil (<5%) produk		
Minor	3	mungkin perlu diperbaiki. Proses sedang terjadi, tapi ada sedikit		
		gangguan atau ketidaknyamanan.		
Sangat		Gangguan sangat rendah pada jalur produksi. Porsi sedang (<10%)		
Rendah	4	sangat sedikit produk mungkin perlu diperbaiki. Proses sedang terjadi,		
		tapi ada sedikit gangguan atau ketidaknyamanan.		
		Gangguan rendah pada jalur produksi. Porsi sedang (<15%) produk		
Rendah	5	mungkin perlu diperbaiki. Proses sedang terjadi, tapi ada sedikit		
		gangguan atau ketidaknyamanan.		
		Gangguan sedang pada jalur produksi. Porsi sedang (>20%) produk		
Sedang	6	mungkin harus dibuang atau dihancurkan (scrapped). Proses sedang		
		terjadi, tapi masih ada gangguan atau ketidaknyamanan.		
		Gangguan besar pada jalur produksi. Porsi (>30%) produk mungkin		
Tinggi	7	perlu dibuang atau dihancurkan (scrapped). Proses mungkin berhenti.		
		Pelanggan tidak puas.		
6		Gangguan besar pada jalur produksi. Hampir (>100%) produk		
Sangat	8	mungkin perlu dibuang atau dihancurkan (scrapped). Proses tidak		
Tinggi		dapat diandalkan. Pelanggan sangat tidak puas.		
B 1 1		Mungkin membahayakan operator atau peralatan. Sangat		
Berbahaya	0	mempengaruhi proses yang aman secara serius dan/atau melibatkan		
dengan	9	ketidakpatuhan pada peraturan pemerintah. Kegagalan akan terjadi		
Peringatan		dengan ada peringatan sebelumnya.		
		Mungkin membahayakan operator atau peralatan. Sangat		
Bahaya	10	mempengaruhi proses yang aman secara serius dan/atau melibatkan		
tanpa	10	ketidakpatuhan pada peraturan pemerintah. Kegagalan akan terjadi		
Peringatan		tanpa ada peringatan.		
L				

5. Menentukan Occurence

Nilai occurence ditentukan berdasarkan frekuensi atau probabilitas kegagalan tersebut dapat terjadi dengan skala 1 sampai 10. Skala yang digunakan berdasarkan rujukan dari Stamatis (2015) yang disesuaikan dengan kondisi perusahaan seperti pada Tabel 2.4 berikut.

Tabel 2.4 Occurence

Klasifikasi	Keterangan	Probabilitas Kegagalan	Nilai
Remote	Kegagalan jarang terjadi	0 produk dari 34 produk/bulan	1
Low	Kogagalan rolatif toriadi	1 produk dari 34 produk/bulan	2
Low	Kegagalan relatif terjadi 2 produk dari 34 produk/bula		3
		3 produk dari 34 produk/bulan	4
Moderate	Kegagalan terjadi sesekali	4 produk dari 34 produk/bulan	5
		5 produk dari 34 produk/bulan	6
I I i mla	Kasasalan kanis di bandana kali	6-7 produk dari 34 produk/bulan	7
High	Kegagalan terjadi berulang kali	8-9 produk dari 34 produk/bulan	8
Von High	Kagagalan kampir pagti tariadi	10 produk dari 34 produk/bulan	9
Very High	Kegagalan hampir pasti terjadi	>10 produk dari 34 produk/bulan	10

6. Menentukan Detection

Nilai detection ditentukan berdasarkan kemampuan alat atau proses kontrol yang digunakan pada fasilitas produksi. Skala yang digunakan merujuk pada Stamatis (2015) yang sudah disesuaikan dengan kondisi perusahaan. Skala tersebut dapat dilihat pada Tabel 2.5 seperti berikut.

Tabel 2.5 Detection

Tabel 2.5 Detection			
Deteksi	Nilai	Kriteria	
Hampir pasti	1	Hampir pasti mendeteksi penyebab potensial dari mode kegagala berikutnya.	
Sangat Tinggi	2	Peluang sangat tinggi bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Tinggi	3	Peluang tinggi bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Cukup Tinggi	4	Peluang cukup tinggi bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Sedang	Peluang sedang bahwa kontrol desain akan mendeteksi atau		
Rendah	Peluang rendah hahwa kontrol desain akan mendeteksi at:		
Sangat Peluang sangat rendah bahwa kontrol de		Peluang sangat rendah bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Kecil Kemungkinan	8	Peluang kecil atau jauh bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Sangat Kecil Kemungkinan	9	Peluang sangat kecil atau sangat jauh bahwa kontrol desain akan mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	
Sangat Tidak Pasti	10	Tidak ada alat kontrol tidak atau kontrol tidak dapat mendeteksi atau mencegah penyebab potensial dari mode kegagalan berikutnya.	

7. Menentukan RPN.

Menghitung nilai severity, occurence, dan detection serta melakukan pembobotan terhadap nilai tertinggi hingga nilai terendah berdasarkan klasifikasi nilai RPN yang telah ditentukan sesuai skala penilaian. Rumus perhitungan RPN yang akan digunakan seperti berikut.

 $\overrightarrow{RPN} = S \times O \times D....(1)$

Tabel 2.6 Klasifikasi RPN

Klasifikasi	RPN
Tidak dapat ditoleransi	201-1000
Tinggi	101-200
Sedang	51-100
Dapat ditoleransi	1-50

Cut-off point nilai RPN untuk setiap kategori dapat disesuaikan mengikuti sifat dan karakteristik proses yang dianalisis. Jika proses yang dianalisis memiliki dampak sangat besar jika terjadi kegagalan maka untuk kategori tinggi/tidak dapat ditoleransi ≥ 200 (Alijoyo, 2020).

8. Analisis

Hasil analisis yang ditentukan berdasarkan hasil penilaian risiko yang direpresentasikan oleh nilai RPN tertinggi berdasarkan klasifikasi pembobotan nilai RPN menggunakan metode FMEA-FTA terintegrasi.

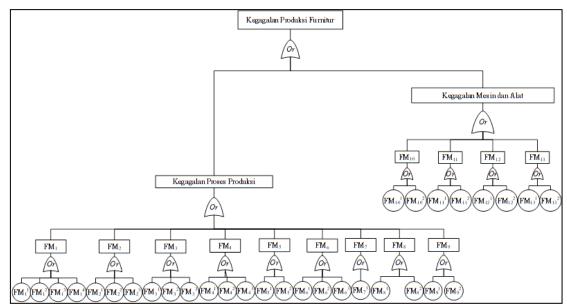
9. Kesimpulan

Hasil analisis risiko tersebut dapat dijadikan sebagai informasi bagi pihak perusahaan untuk menentukan langkah pencegahan terkait kegagalan proses produksi furnitur.

3. HASIL DAN PEMBAHASAN

Berikut ini merupakan hasil penelitian yang dilakukan dengan menggunakan metode FMEA-FTA terintegrasi.

1. Hasil identifikasi risiko kegagalan atau mode kegagalan (failure mode) yang mungkin terjadi pada proses produksi furnitur yang dapat dilihat pada Tabel 3.1.


Tabel 3.1 Identifikasi Failure Mode

rabei 5.1 Identifikasi Fandre Mode
Failure Mode (Mode Kegagalan)
Kayu retak
Posisi diameter lubang tidak presisi
Ukuran tidak sesuai
Kayu lapis (HPL) tidak simetris
Permukaan kayu solid bergelombang (cuttermark)
Permukaan kayu solid masih kasar
Rangka besi patah
Pemolesan dempul yang tidak merata dan tidak
menempel sempurna.
Pewarnaan tidak merata (Warna Belang)
Kegagalan alat spray gun
Kegagalan pada mesin Saw
Kegagalan mesin router
Kegagalan alat heat gun

2. Hasil identifikasi akar penyebab kegagalan (root causes of failure) dengan FTA yang dapat dilihat pada Gambar 2.1 dan Tabel 3.2 berikut.

Tabel 3.2 Identifikasi Akar Penyebab Kegagalan (root causes of failure)

	Potensi Akar Penyebab		
Failure Mode (Mode	Kegagalan (Potential Root		
Kegagalan)		FM _{ij}	
	Cause of the Failure)	EN4	
	Penyusutan kayu berlebihan	FM ₁₁	
	Tidak ada SOP pengadaan bahan	FM ₁₂	
Kayu ratak	baku	FI*I12	
Kayu retak	Pengeringan kayu tidak merata	FM ₁₃	
	Kayu terserang oleh jamur		
	pembusuk	FM ₁₄	
	Salah pengukuran	FM ₂₁	
Dagigi diamatan lubang	Kerusakan mata pisau mesin	11121	
Posisi diameter lubang	router	FM_{22}	
tidak presisi		EM	
	QC awal kurang teliti	FM ₂₃	
	Kesalahan perhitungan	FM ₃₁	
Ukuran tidak sesuai	Kerusakan pada mata pisau	FM ₃₂	
UKUTATI LIUAK SESUAI	mesin potong	1 1132	
	QC awal kurang teliti	FM ₃₃	
	Kesalahan pemotongan	FM ₄₁	
Kayu lapis (HPL) tidak	Tidak ada SOP pengadaan bahan		
simetris	baku	FM ₄₂	
simetris		FM ₄₃	
	QC awal kurang teliti	FI*I43	
Permukaan kayu solid	Kesalahan pada teknik	FM ₅₁	
bergelombang	penyerutan kayu		
	Kualitas bahan tidak sesuai	FM ₅₂	
(Cutternark)	standar	□ 1152	
	Teknik mengamplas asal-asalan	FM ₆₁	
Permukaan kayu solid	Nomor grit amplas tidak sesuai	FM ₆₂	
masih kasar	Adanya bekas proses		
masiii kasai	pemotongan	FM ₆₃	
Rangka besi patah	Sambungan las kurang kuat	FM ₇₁	
Kangka besi patan		1 1 1 1 / 1	
Pemolesan dempul yang	Kesalahan mengamplas saat	FM ₈₁	
tidak merata dan tidak	dempul belum kering		
menempel sempurna.	Dempul mengelupas karena daya	FM ₈₂	
menemper semparna:	rekat dempul rendah	1 1 102	
	Tidak ada SOP pengadaan bahan	FM ₉₁	
Pewarnaan tidak merata	baku kayu	FI*I91	
(Warna Belang)	Kesalahan dalam mencampurkan		
(1 1 1 3)	bahan finishing .	FM ₉₂	
Kegagalan alat Spray	Perawatan tidak rutin dilakukan	FM ₁₀₁	
Gun	Nozzle tersumbat kotoran	FM ₁₀₂	
	Perawatan tidak rutin dilakukan	FM ₁₁₁	
Kegagalan pada Mesin		FM ₁₁₂	
Saw	Mata gergaji aus/tumpul		
_	Perawatan tidak rutin dilakukan	FM ₁₂₁	
Kegagalan Mesin Router	Penggunaan mata router tidak	FM ₁₂₂	
	tepat		
Kanandan alat Hast Com	Perawatan tidak rutin dilakukan	FM ₁₃₁	
Kegagalan alat Heat Gun	Elemen pemanas rusak	FM ₁₃₂	

Gambar 1 Fault Tree Diagram.

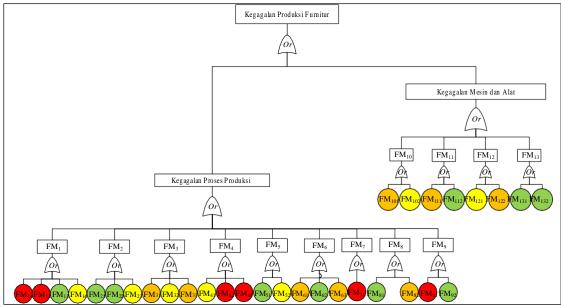
3. Penentuan Nilai Severity, Occurence, dan Detection setiap akar penyebab kegagalan. Parameter yang digunakan untuk menentukan nilai RPN yaitu dengan menggunakan skala penilaian tingkat keparahan/keseriusan (severity) menggunakan skala seperti pada Tabel 2.3, probabilitas atau frekuensi terjadinya kegagalan (occurence) pada Tabel 2.4, dan kemampuan alat deteksi atau process control (detection) akar penyebab kegagalan seperti pada Tabel 2.5.

Hasil penilaian akar penyebab kegagalan proses produksi furnitur dapat dilihat pada Tabel 3.2 berikut.

Tabel 3.2 Severity, Occurence dan Detection Setiap Akar Penyebab Kegagalan

Identifikasi Risiko	Penilaian Risiko			
FM _{ij}	S	0	D	RPN
FM ₁₁	8	6	8	384
FM ₁₂	8	7	6	336
FM ₁₃	9	5	1	45
FM ₁₄	10	6	1	60
FM ₂₁	7	5	1	35
FM ₂₂	6	1	1	6
FM ₂₃	7	7	2	98
FM ₃₁	8	6	3	144
FM ₃₂	7	2	6	84
FM ₃₃	8	5	4	160
FM ₄₁	5	5	3	75
FM ₄₂	7	5	6	210
FM ₄₃	6	7	7	294
FM ₅₁	9	1	2	18
FM ₅₂	7	5	2	70
FM ₆₁	7	6	3	126
FM ₆₂	6	4	1	24
FM ₆₃	6	7	3	126
FM ₇₁	9	5	7	315
FM ₈₁	5	3	3	45
FM ₈₂	5	8	4	160

Identifikasi Risiko		Penilaian Risiko		
FM _{ij}	S	0	D	RPN
FM ₉₁	8	9	6	432
FM ₉₂	7	7	1	49
FM ₁₀₁	7	3	5	105
FM ₁₀₂	6	2	6	72
FM ₁₁₁	9	4	3	108
FM ₁₁₂	9	4	1	36
FM ₁₂₁	9	2	3	54
FM ₁₂₂	10	3	4	120
FM ₁₃₁	4	1	5	20
FM ₁₃₂	2	1	6	12


4. Mengurutkan nilai RPN berdasarkan nilai tertinggi hingga terendah Hasil pengurutan nilai RPN berdasarkan nilai yang paling tinggi dapat dilihat seperti pada Tabel 3.6 berikut.

Tabel 3.6 Nilai RPN dan Peringkat Setiap Akar Penyebab Kegagalan (root

causes of failure).

Idei	Penilaian Risiko		
Failure Mode	Root Cause of Failure	RPN	Ranking
Pewarnaan tidak merata	Tidak ada SOP pengadaan bahan	432	1
(warna belang).	baku kayu.		1
Kayu retak.	Penyusutan kayu berlebih.	384	2
Kayu retak.	Tidak ada SOP pengadaan bahan baku.	336	3
Rangka resi patah	Sambungan las kurang kuat.	315	4
Kayu lapis (HPL) tidak simetris.	Quality Control awal kurang teliti.	294	5
Kayu lapis (HPL) tidak	Tidak ada SOP pengadaan bahan	210	6
simetris.	baku.		-
Ukuran tidak sesuai	Quality Control awal kurang teliti.	160	7
Pemolesan dempul yang tidak merata dan tidak menempel sempurna.	Dempul mengelupas karena daya rekat dempul rendah.	160	8
Ukuran tidak sesuai.	Kesalahan perhitungan.	144	9
Permukaan kayu solid masih kasar.	Teknik mengamplas asal-asalan.	126	10
Permukaan kayu solid masih kasar.	Adanya bekas proses pemotongan.	126	11
Kegagalan pada mesin router.	Penggunaan mata router tidak tepat.	120	12
Kegagalan pada mesin saw	Perawatan tidak rutin dilakukan.	108	13
Kegagalan pada alat spray gun.	Perawatan tidak rutin dilakukan	105	14
Posisi diameter lubang tidak presisi.	Quality Control awal kurang teliti.	98	15
Ukuran tidak sesuai.	Kerusakan pada mata pisau mesin potong	84	16
Kayu lapis (HPL) tidak simetris.	Kesalahan pemotongan	75	17
Kegagalan pada alat spray gun.	Nozzle tersumbat kotoran	72	18

Identifikasi Risiko		Penilaian Risiko	
Failure Mode	Root Cause of Failure	RPN	Ranking
Permukaan kayu solid bergelombang (cuttermark).	Kualitas bahan tidak sesuai standar.	70	19
Kayu retak.	Kayu terserang oleh jamur pembusuk.	60	20
Kegagalan pada mesin router.	Perawatan tidak rutin dilakukan.	54	21
Pewarnaan tidak merata (warna belang).	Kesalahan dalam mencampurkan bahan finishing.	49	22
Kayu retak.	Pengeringan kayu tidak merata	45	23
Pemolesan dempul tidak merata dan tidak menempel sempurna.	Kesalahan mengamplas saat dempul belum kering.	45	24
Kegagalan pada mesin saw.	Mata gergaji aus/tumpul.	36	25
Posisi diameter lubang tidak presisi.	Salah pengukuran.	35	26
Permukaan kayu solid masih kasar.	Nomor grit amplas tidak sesuai	24	27
Kegagalan pada alat heat gun.	Perawatan tidak rutin dilakukan	20	28
Permukaan kayu solid bergelombang (cuttermark).	Kesalahan pada teknik penyerutan kayu	18	29
Kegagalan pada alat heat gun.	Elemen pemanas rusak	12	30
Posisi diameter lubang tidak presisi.	Kerusakan mata pisau mesin router	6	31

Gambar 2 Fault Tree Diagram Setiap Akar Penyebab Kegagalan

4. KESIMPULAN

Kesimpulan yang didapat berdasarkan hasil penelitian adalah sebagai berikut:

- 1. Berdasarkan klasifikasi nilai RPN, ada 6 akar penyebab kegagalan yang tidak dapat ditoleransi dan perlu tindakan pengendalian risiko untuk mencegah terjadinya kegagalan berkelanjutan. Akar penyebab kegagalan yang teridentifikasi tersebut diantaranya:
 - a. Pewarnaan tidak merata (warna belang) yang disebabkan oleh tidak ada SOP pengadaan bahan baku kayu pada proses wood staining.
 - b. Kayu retak yang disebabkan oleh penyusutan kayu berlebihan pada proses pengeringan kayu.
 - c. Kayu retak yang disebabkan oleh tidak ada SOP pengadaan bahan baku pada proses pengeringan kayu.
 - d. Rangka besi patah disebabkan oleh sambungan las kurang kuat pada proses pengelasan.
 - e. Kayu lapis (HPL) tidak simetris disebabkan oleh quality control awal kurang teliti pada proses pemasangan HPL.
 - f. Kayu lapis (HPL) tidak simetris disebabkan oleh tidak ada SOP pengadaan bahan baku pada proses pemasangan HPL.

DAFTAR PUSTAKA

- Haasl, D F, Roberts, N H, Vesely, W E, & Goldberg, F F, (1981). Fault tree handbook. United States.
- Mutlu, N. G., & Altuntaş, S. (2019). Hazard and Risk Analysis for Ring Spinning Yarn Production Process by Integrated FTA-FMEA Approach. Tekstil ve Konfeksiyon,29(3),208-218.
- Stamatis, D.H. (2015) The ASQ Pocket Guide to Failure Mode and Effect Analysis (FMEA). Wisconsin: ASQ.
- Alijoyo, A., Wijaya, B., & Jacob, I. (2020). 31 Teknik Penilaian Risiko Berbasis ISO 31010: Failure Mode and Effect Analysis. LSP MKS.