ANALISIS DINAMIK JEMBATAN PELENGKUNG (STUDI KASUS: JEMBATAN PALU IV)

BHAYU RAYMA GHULAM, ERMA DESMALIANA, EUNEKE WIDYANINGSIH

Jurusan Teknik Sipil, Institut Teknologi Nasional, Bandung Email: bhayurayma@yahoo.co.id

ABSTRAK

Jembatan mempunyai arti penting bagi setiap orang. Akan tetapi tingkat kepentingannya tidak sama bagi tiap orang, sehingga akan menjadi suatu bahan studi yang menarik. Perencanaan pembangunan jembatan membutuhkan teknologi struktur yang kuat dan ringan sehingga mampu menahan beban-beban yang bekerja pada jembatan. Material ringan dan struktur kuat yang sering dipakai pada konstruksi jembatan pada umumnya berupa material baja. Salah satu jenis jembatan baja adalah Jembatan Pelengkung (Arch). Pada jembatan pelengkung baja memiliki beberapa tipe yaitu deck arch, through arch, dan half-through arch. Jembatan Palu IV atau Jembatan Ponulele merupakan jembatan lengkung pertama di Indonesia yang terletak di Kota Palu, Sulawesi Tengah, Indonesia. Gempa bumi adalah bencana alam yang sangat sulit diprediksi dan kejadiannya relatif singkat. Dampak tersebut terjadi pada peristiwa gempa bumi pada tanggal 29 Juli 2018 yang menyebabkan runtuhnya Jembatan Palu IV. Tujuan dari penelitian ini adalah untuk mengetahui hasil analisis perilaku struktur Jembatan Palu IV terhadap beban dinamik dengan pemodelan menggunakan software MIDAS

Kata kunci: jembatan, jembatan lengkung, jembatan palu, analisis dinamik, gempa palu, respon spektrum

ABSTRACT

Bridge means something for everyone. But the level of importance is not the same for everyone. So that will be an interesting study. Bridge construction requires strong and lightweight structural technology that can withstand the loads that work on the bridge. Light material and strong structure that is often used in bridge construction generally in the form of steel material. One type of steel bridge is the arch brige. There are several types of arch bridge namely deck arch, through arch, and half-through arch. Palu IV bridge or Ponulele bridge is the first arch bridge in Indonesia that located in Palu City, Central Sulawesi, Indonesia. Earthquake is natural disaster that is very difficult to predict and the occurrence is relatively short. The impact occurred on the earthquake on 29 July 2018 which caused the collapse of the Palu IV bridge. The purpose of the research is to determine the results of the analysis of the Palu IV bridge structure behavior with dynamic load and the modeling of the bridge using the MIDAS software.

Keywords: bridge, arch bridge, palu bridge, dynamic analysis, palu earthquake, respons spectrum

1. PENDAHULUAN

Jembatan mempunyai arti penting bagi setiap orang. Akan tetapi tingkat kepentingannya tidak sama bagi tiap orang, sehingga akan menjadi suatu bahan studi yang menarik. Perencanaan pembangunan jembatan membutuhkan teknologi struktur yang kuat dan ringan sehingga mampu menahan beban-beban yang bekerja pada jembatan. Material ringan dan struktur kuat yang sering dipakai pada konstruksi jembatan pada umumnya berupa material baja. Pada jembatan pelengkung baja memiliki beberapa tipe yaitu *deck arch, through arch,* dan *half-through arch.* Jembatan Palu IV atau Jembatan Ponulele merupakan jembatan lengkung pertama di Indonesia yang terletak di Kota Palu, Sulawesi Tengah, Indonesia.

Indonesia menjadi salah satu negara yang paling rawan terkena bencana gempa. Hal ini dikarenakan Indonesia merupakan negara kepulauan yang terletak pada pertemuaan empat lempeng tektonik yaitu lempeng benua Asia, lempeng benua Australia, lempeng samudra Hindia dan lempeng samudra Pasifik. Sewaktu-waktu lempeng tektonik megalami pergeseran dan menimbulkan gempa bumi. Gempa bumi ini dapat mengakibatkan dampak berupa kerusakan ataupun keruntuhan bangunan. Dampak tersebut terjadi pada peristiwa gempa bumi pada tanggal 29 Juli 2018 yang menyebabkan runtuhnya Jembatan Palu IV.

Tujuan dari penelitian ini adalah mengetahui hasil analisis perilaku stuktur Jembatan Palu IV terhadap beban dinamik.

2. TINJAUAN PUSTAKA

2.1 Jembatan Pelengkung

Jembatan *Arch* (Pelengkung) adalah jembatan yang konstruksinya berbentuk setengah lingkaran atau parabola dengan *abutmen*t di kedua sisinya. Pemakaian desain berupa busur secara alami akan mengalihkan beban yang diterima lantai kendaraan jembatan menuju ke *abutment* yang menjaga kedua sisi jembatan agar bergerak kesamping (Supriyadi, 2007). Secara struktural, jembatan busur merupakan jenis jembatan yang mengandalkan batang lengkung (busur) dan kabel penggantung antara busur jembatan dengan *deck* jembatan untuk memikul beban yang terjadi.

Pada jembatan lengkung terdapat dua macam gaya, yaitu gaya tarik dan gaya tekan. Dalam proses pemilihan desain jembatan, ada beberapa hal yang perlu diperhatikan, diantaranya adalah:

- a. Pelengkung pada jembatan Pelengkung pada jembatan busur merupakan struktur utama yang menahan sebagian besar beban yang diterima oleh jembatan. Lengkung umumnya terletak pada perletakan jepit, dengan ketebalan awal lengkung sebesar 1,65 sampai 2 kali (L/20) dari puncak
- Jumlah segmen
 Jumlah segmen berpengaruh pada penyaluran gaya pada jembatan, semakin sedikit jumlah segmen semakin besar gaya yang dipikul oleh kolom penyangga.

lengkung (L/40) ketebalan rata-rata adalah L/30 dan tinggi fokus L/5 (ACI 1996).

2.2 Pembebanan

Beban pada jembatan lalu lintas yang direncanakan harus bisa memenuhi persyaratan pembebanan yang mengacu dalam SNI 1725:2016 tentang "Standar Pembebanan untuk Jembatan". Pembebanan dibagi menjadi beberapa jenis, yaitu sebagai berikut:

1. Beban Permanen

Beban permanen adalah berat keseluruhan dari semua komponen structural, dimana berat oleh volume elemen struktur dan masa jenis dari material struktur dan mencakup semua peralatan, utilitas, dan komponen non-struktural

2. Beban Lalu Lintas

Beban hidup adalah beban yang terdiri dari lajur lalu lintas rencana, beban lajur, beban truk, faktor beban dinamis, beban rem dan beban pejalan kaki

3. Beban Angin

Beban angin adalah tekanan angin yang diasumsikan disebabkan oleh angin rencana dengan kecapatan dasar sebesar 90 hingga 126 km/jam.

4. Beban Gempa

Beban gempa adalah semua beban statik ekuivalen yang bekerja pada jembatan yang merupakan pengaruh dari gerakan tanah akibat gempa bumi.

2.3 Kombinasi Pembebanan Jembatan

Kombinasi beban untuk jembatan dibagi menjadi tiga kondisi yaitu kondisi batas layan, kondisi batas ultimit dan kondisi ekstrem, dimana dalam kombinasi beban terdiri atas beban permanen dan beban *transient* yang diberikan pada **Tabel 1**

TT **Gunakan salah** TD satu EW_S EW_L BF Keadaan MS EU_n EU **TB** TG **ES Batas** MA TR EQ TC TV TP γ_P γ_{TG} γ_{ES} Kuat I 1,80 1,00 1,00 0,5/1,2 γ_{TG} γ_P 0,5/1,2 γ_{ES} Kuat II 1,40 1,00 1,00 γ_{TG} γ_{ES} $\overline{\gamma_P}$ 0,5/1,2 Kuat III 1,00 1,40 1,00 γ_P Kuat IV 1,00 1,00 0,5/1,2 γ_P γ_{ES} _ γ_{TG} _ _ _ Kuat V 1,00 0,40 1,00 1,00 0,5/1,2 γ_P γ_{eq} 1,00 0,5/1,2 Ekstrem I 1,00 1,00 γ_P Ekstrem II 0,50 1,00 -1,00 0,5/1,2 1,00 - γ_{TG} γ_{ES} 1,00 Daya Layan I 1,00 1,00 1,00 0,30 1,00 1,00 0,5/1,2 1,00 1,30 1,00 1,00 0,5/1,2 Daya Layan II γ_{ES} γ_{TG} 1,00 1,00 0,5/1,2 Daya Layan III 1,00 0,80

Tabel 1. Kombinasi dan Faktor Beban

(Sumber: SNI 1725:2016)

Dava Lavan IV

1,00

1,00

0.7

2.4 Analisa Kekuatan Baja

Pada penelitian ini perencanaan struktur baja menggunakan RSNI T-03-2005 sebagai acuan mendesain. Kekuatan baja pada keadaan batas ultimit diperoleh dari perkalian kekuatan nominal dengan faktor reduksi kekuatan. Faktor reduksi kekuatan diambil dari nilai-nilai yang dapat dilihat pada **Tabel 2.**

1,00

0,5/1,2

1,00

Tabel 2. Faktor Reduksi Kekuatan

No	Situasi Rencana	Faktor Reduksi Kekuatan (Ø)
1	Lentur	0,9
2	Geser	0,9
3	Aksial Tekan	0,85
4	Aksial Tarik a. Terhadap kuat tarik leleh b. Terhadap kuat tarik faktur	0,9 0,75
5	Penghubung geser	0,75
6	Sambungan baut	0,75
7	Hubungan las a. Las tumpul penetrasi penuh b. Las sudut dan las tumpul penetrasi sebagian	0,9 0,75

(Sumber: RSNI T-03-2005)

Pada peraturan RSNI T-03-2005 sifat mekanis material baja struktural yang digunakan dalam perencanaan harus memenuhi persyaratan minimum yang diberikan pada **Tabel 3.**

Tabel 3. Sifat Mekanis Baja Struktural

Jenis Baja	Tegangan putus minimum Fu [MPa]	Tegangan putus minimum Fu [MPa]	Pereganan minimum (%)
BJ34	340	210	22
BJ37	370	240	20
BJ41	410	250	18
BJ50	500	290	16
BJ55	550	410	13

(Sumber: RSNI T-03-2005)

Sifat-sifat mekanis baja struktural lainnya untuk maksud perencanaan ditetapkan sebagai berikut:

Modulus elastisitas : E = 200.000 MPaModulus geser : G = 80.000 MPa

Angka poisson : $\mu = 0.3$

Koefisien pemuaian : $\propto = 12 \times 10^{-6} \text{ per }^{\circ}\text{C}$

Pada perencanaan struktur baja jembatan diperlukan kontrol kapasitas terhadap lentur, geser, dan tarik.

2.5 Gempa

Jembatan harus direncakan agar memiliki kemungkinan kecil untuk runtuh namun dapat mengalami kerusakan yang signifikan dan gangguan terhadap pelayanan akibat gempa dengan kemungkinan terlampaui 7% dalam 75 tahun. Penggantian secara parsial atau lengkap pada struktur diperlukan untuk beberapa kasus. Kinerja yang lebih tinggi seperti kinerja operasional dapat ditentukan oleh pihak yang berwenang.

Bahaya gempa pada jembatan harus dikarakterisasi dengan menggunakan respon spektra percepatan dan faktor situs untuk kelas situs yang sesuai.

Respon spektra percepatan dapat ditentukan baik dengan prosedur umum atau berdasarkan prosedur spesifik-situs. Prosedur spesifik-situs dilakukan jika terdapat kondisi sebagai berikut:

- 1. Jembatan berada dalam jarak 10 km dari patahan aktif;
- 2. Situs termasuk dalam katergori kelas F sesuai Tabel 4.

Tabel 4. Kelas Situs

Kelas Situs	$\overline{V_s}(m/s)$	\overline{N}	$\overline{S_u}(kPa)$	
a. Batuan Keras	$\overline{V_s} \ge 1500$	N/A	N/A	
b.Batuan	$750 < \overline{V_s} \le 1500$	N/A	N/A	
c.Tanah Sangat Padat dan Batuan Lunak	$350 < \overline{V_s} \le 750$	$\overline{N} > 50$	$\overline{S_u} \ge 100$	
d.Tanah Sedang	$175 < \overline{V_s} \le 350$	$15 \le \overline{N} \le 50$	$50 \le \overline{S_u} \le 100$	
e.Tanah Lunak	$\overline{V_s}$ < 175	\overline{N} < 15	$\overline{S_u} < 50$	
	Atau setiap profil lapisan tan karakteristik sebagai berikut 1. Indeks plastisitas, PI > 20 2. Kadar air (W) ≤ 40% dan 3. Kuat geser tak ter <i>drainas</i>	:)	ebih dari 3m dengan	
f. Lokasi yang Membutuhkan Penyelidikan Geoteknik dan Analisis Respon Dinamik Spesifik	Setiap profil lapisan tanah yang memiliki salah satu atau lebih dari karakteristik sebagai berikut: - Rentan dan berpontensi gagal terhadap beban gempa seperti <i>liquification</i> , tanah lempung sangat sensitif, tanah tersementasi lemah -Lempung organik tinggi dan gambut (dengan ketebalan > 3m - Plastisitas tinggi (ketebalan H > 7,5m dengan PI > 75) -Lapisan lempung lunak/medium kaku dengan ketebalan H>35m			

(Sumber: SNI 2833-2016)

Untuk penentuan respon spektra di permukaan tanah, diperlukan suatu faktor amplifikasi untuk PGA, periode pendek (T=0.2 detik) dan periode 1 detik. Faktor amplifikasi meliputi faktor amplifikasi getaran terkait percepatan pada batuan dasar (F_{PGA}), faktor amplifikasi periode pendek (F_a) dan faktor amplifikasi terkait percepatan yang mewakili getaran periode 1 detik (F_v). **Tabel 5** dan **Tabel 6** memberikan nilai-nilai F_{PGA} , F_a , dan F_v untuk berbagai klasifikasi jenis tanah.

Tabel 5. Faktor Amplifikasi untuk PGA dan 0,2 Detik (F_{PGA}/F_a)

Kelas Situs	PGA ≤ 0,1 Ss ≤ 0,25	PGA = 0,2 Ss = 0,5	PGA = 0,3 Ss = 0,75	PGA = 0,4 Ss = 1,0	PGA > 0,5 Ss ≥ 1,25
Batuan Keras (SA)	0,8	0,8	0,8	0,8	0,8
Batuan (SB)	1	1	1	1	1
Tanah Keras (SC)	1,2	1,2	1,1	1	1
Tanah Sedang (SD)	1,6	1,4	1,2	1,1	1
Tanah Lunak (SE)	2,5	1,7	1,2	0,9	0,9
Tanah Khusus (SF)	SS	SS	SS	SS	SS

Catatan: Untuk nilai-nilai antara dapat dilakukan interpolasi linier

(Sumber: SNI 2833-2016)

Keterangan:

PGA adalah percepatan puncak batuan dasar sesuai peta percepatan puncak di batuan dasar (PGA) untuk probabilitas terlampaui 7% dalam 75 tahun.

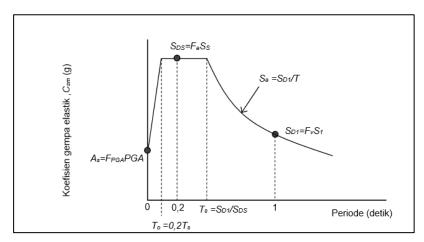
Ss adalah parameter respons spektra percepatan gempa untuk periode pendek (T=0,2 detik) dengan probabilitas terlampaui 7% dalam 75 tahun sesuai dengan Gambar 2.

SS adalah lokasi yang memerlukan investigasi geoteknik dan analisis respons dinamik spesifik.

Tabel 6. Besarnya Nilai Faktor Amplifikasi untuk Periode 1 Detik (F_n)

Kelas Situs	S ₁ ≤ 0,1	$S_1 = 0,2$	$S_1 = 0,3$	$S_1 = 0,4$	S ₁ ≥ 0,5
Batuan Keras (SA)	0,8	0,8	0,8	0,8	0,8
Batuan (SB)	1,0	1,0	1,0	1,0	1,0
Tanah Keras (SC)	1,7	1,6	1,5	1,4	1,3
Tanah Sedang (SD)	2,4	2,0	1,8	1,6	1,5
Tanah Lunak (SE)	3,5	3,2	2,8	2,4	2,4
Tanah Khusus (SF)	SS	SS	SS	SS	SS

Catatan: Untuk nilai-nilai antara dapat dilakukan interpolasi linier


(Sumber: SNI 2833-2016)

Keterangan:

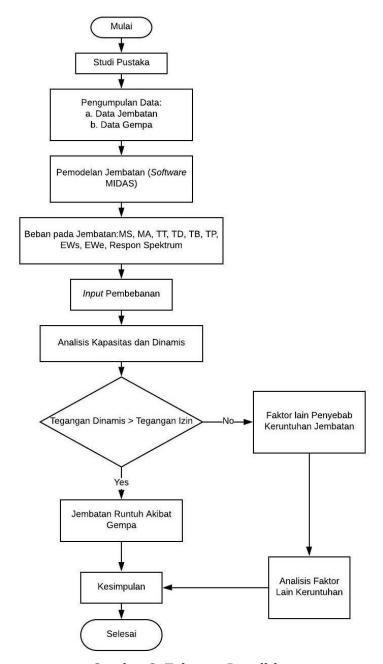
- adalah parameter respon spectra percepatan gempa untuk periode 1 detik dengan S_1 probabilitas terlampaui 7% dalam 75 tahun
- SS adalah lokasi yang memerlukan investigasi geoteknik dan analisis respon dinamik spesifikasi

2.6 Respon Spektra

Respon spektra adalah nilai yang menggambarkan respon maksimum sistem berderajatkebebasan-tunggal pada berbagai frekuensi alami (periode alami) teredam akibat suatu goyangan tanah. Untuk kebutuhan praktis, maka respon spektra dibuat dalam bentuk respon spektra yang sudah disederhanakan.

Gambar 1. Bentuk Tipikal Respon Spektra di Permukaan Tanah (Sumber: SNI 2833-2016)

Respon spektra di permukaan tanah ditentukan dari 3 (tiga) nilai percepatan puncak yang mengacu pada peta gempa Indonesia dengan probabilitas terlampaui 7% dalam 75 tahun (PGA, S_s dan S_1), serta nilai faktor amplifikasi F_{PGA} , F_a , dan F_v . Perumusan respon spektra adalah sebagai berikut:


$$A_{S} = F_{PGA} \times PGA \qquad ...$$
 (1)

$$S_{DS} = F_a \times S_s$$
 ... (2)
 $S_{D1} = F_v \times S_1$... (3)

$$S_{D1} = F_{\nu} \times S_1 \qquad \dots \tag{3}$$

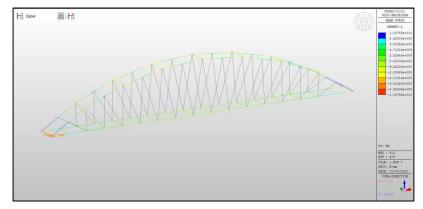
3. METODE PENELITIAN

Penelitian ini melakukan analisis dinamik pada Jembatan Palu IV dengan analisis riwayat waktu. Secara umum tahap-tahap yang dilakukan pada penelitian ini dapat dilihat pada **Gambar 2.**

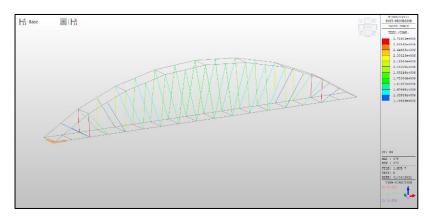
Gambar 2. Tahapan Penelitian

4. HASIL PEMODELAN DAN ANALISA STRUKTUR

4.1 Data Perencanaan Struktur

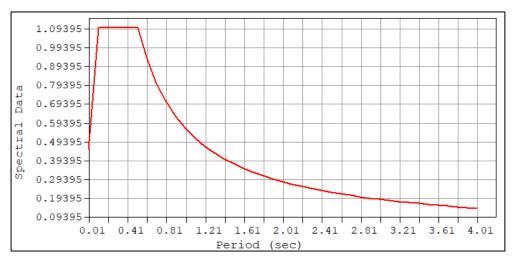

Data perencanaan struktur yang digunakan antara lain sebagai berikut:

- 1. Fungsi jembatan sebagai jembatan jalan raya.
- 2. Struktur jembatan berada di Palu dengan jenis tanah sedang.
- 3. Tinggi busur setinggi 20,2m.


- 4. Panjang bentang jembatan sepanjang 125m.
- 5. Mutu baja yang digunakan adalah ASTM A572-50 dengan f_{ν} = 344,738 MPa.
- 6. Modulus elastisitas baja adalah E_s = 200.000 MPa.

4.2 Pemodelan Struktur

Pemodelan struktur menggunakan perangkat lunak MIDAS 2019 Pemodelan yang dilakukan ini bertujuan untuk mengetahui kapasitas aksial baja, kapasitas *beam*, kapasitas kabel. dilihat pada **Gambar 3.** dan **Gambar 4.**


Gambar 3. Beam Diagram Akibat Beban Sendiri Jembatan Palu IV

Gambar 4. Truss Force Akibat Beban Sendiri Jembatan Palu IV

4.3 Beban Gempa

Beban gempa rencana diperhitungkan berdasarkan SD_s dan SD₁ yang terdapat pada *website* PUSJATAN berdasarkan *site specific* untuk daerah Palu dengan asumsi tanah sedang (SD). Dimana metode analisis gempa yang digunakan adalah dinamik respon spektrum. Kurva respon spektrum desain untuk semua jenis tanah yang dihasilkan untuk Palu adalah seperti pada **Gambar 5.**

Gambar 5. Kurva Respon Spektrum untuk daerah Palu dengan Kondisi Tanah Sedang (Sumber: http://petagempa.pusjatan.pu.go.id/SpektrumRespons.aspx?lon=119,6740773 9133041&lat=-1,0369942856813106)

4.4 Hasil Analisis

Setelah melakukan pendefinisian dan pemodelan struktur, kemudian dilakukan analisis struktur. Pemodelan struktur yang terdiri dari gelagar memanjang *box girder*, kabel dan pelengkung baja. Berikut ini hasil dari analisis struktur.

Tabel 7. Hasil Output Tegangan Kabel

No	Element	Load	Force (N)
1	342	MS	3306268,509
2	343	MS	3305896,489
3	344	MS	3305835,184
4	345	MS	3305285,373
5	346	MS	2523201,311
6	347	MS	2521710,954
7	348	MS	2521594,957
8	349	MS	2520647,349
9	350	MS	2183680,68
10	351	MS	2183579,298
11	352	MS	2183062,818
12	353	MS	2182490,902
13	354	MS	1956896,104
14	355	MS	1956398,801
15	358	MS	1953764,176
16	359	MS	1953172,074
17	360	MS	1850117,061
18	361	MS	1848745,455
19	362	MS	1848655,895
20	363	MS	1848349,215
21	364	MS	1805766,823
22	365	MS	1805087,579
23	366	MS	1804424,374
24	367	MS	1804006,653
25	368	MS	1708774,646
26	369	MS	1707334,27
27	370	MS	1706596,892

Tabel 8. Hasil *Output* Tegangan *Arch* dan Gelagar

Elem	Load	Part	<i>Axial</i> [N]	<i>Moment</i> -y [Nmm]
254	MS	I[138]	-41660827,12	4805401251
254	MS	J[119]	-41660827,12	-2855142595
374	MS	I[177]	-41660182,7	4805331422
374	MS	J[126]	-41660182,7	-2855046243
207	MS	J[184]	-41659743,08	4805012094
207	MS	I[131]	-41659743,08	-2856227310
198	MS	J[176]	-41657744,72	4807226198
198	MS	I[125]	-41657744,72	-2860702809
190	MS	J[138]	-41119407,86	4805401251
190	MS	I[1]	-41119407,86	4288447023
412	MS	J[177]	-41118778,61	4805331422
412	MS	I[21]	-41118778,61	4288577520
410	MS	I[184]	-41118340,05	4805012094
410	MS	J[31]	-41118340,05	4288037918
418	MS	I[176]	-41116385,7	4807226198
418	MS	J[11]	-41116385,7	4287322281
191	MS	J[139]	-40919870	6896521856
191	MS	I[119]	-40919870	-2855116940
201	MS	J[178]	-40919246,02	6896711429
201	MS	I[126]	-40919246,02	-2855071897
423	MS	I[135]	0,18	2466336,08
423	MS	J[26]	0,18	-2466327,63
411	MS	I[1]	3,27	199353,15
411	MS	J[21]	3,27	-199355,92
420	MS	I[173]	35082347,49	11204848945
420	MS	J[11]	35082347,49	-4287154047
307	MS	J[173]	35082375,56	11205009736
307	MS	I[171]	35082375,56	5054272717
311	MS	I[174]	35085200,73	11206468509
311	MS	J[172]	35085200,73	5061142358
421	MS	I[174]	35085228,8	11206629299
421	MS	J[31]	35085228,8	-4288206152
325	MS	J[58]	35085532,86	11208168291
325	MS	I[146]	35085532,86	5059865785
419	MS	J[58]	35085543,42	11208188110
419	MS	I[21]	35085543,42	-4288595673
20	MS	J[12]	35086527,52	11208184289
20	MS	I[1]	35086527,52	-4288428870
293	MS	I[12]	35086538,09	11208204108
293	MS	J[145]	35086538,09	5059843493
306	MS	J[171]	36211773	5054348380
306	MS	I[169]	36211773	2787157306
312	MS	I[172]	36213811,13	5061066695
312	MS	J[170]	36213811,13	2792454247
324	MS	J[146]	36214449,3	5059845828
324	MS	I[148]	36214449,3	2792456660
294	MS	I[145]	36215359,62	5059863450
294	MS	J[147]	36215359,62	2792296318

Didapat tegangan kabel terbesar pada kabel 342 dengan tegangan sebesar 3306268,51 N, tegangan aksial *arch* terbesar pada elemen 254 yaitu sebesar 41660827,12 N. Dan tegangan momen terbesar pada balok terdapat pada elemen 411 yaitu sebesar 199353,15 Nmm.

4.4 Kapasitas Aksial pada Arch

Pada Jembatan Palu IV digunakan baja pelengkung yang didesain sedemikian rupa. Pengecekan pada baja pelengkung berupa pengecekan kapasitas batang tekan yang meliputi rasio kelangsingan penampang, pengecekan desain kekuatan tekan.

Pengecekan pada baja pelengkung adalah sebagai berikut:

Data: Profil Penampang: Box 1100 x 800 x 16 x 14

P = 41660827,12 N (Element 254) dapat dilihat pada **Tabel 9.**

L = 8337,32218 mm

$$K = 1$$

$$Ry = \sqrt{\frac{9,89 \times 10^9}{5,67 \times 10^4}} = 417,644 \text{ mm}$$

E = 200000 MPa

$$Ag = 5,67 \times 10^4$$

$$Fy = 344,738 \text{ MPa}$$

Perhitungan:

a. Rasio kelangsingan penampang

$$\frac{\frac{K \cdot L}{r_y}}{\frac{1 \times 8337,3218}{417,644}} < 4,71 \sqrt{\frac{E}{F_y}}$$

19,962 < 113,447
$$\rightarrow$$
 profil in – elastis, $F_{cr} = 0.658^{\frac{F_y}{F_e}} \times F_y$

b. Tegangan tekuk Euler

$$F_e = \frac{\pi^2 E}{\left(\frac{K \cdot L}{r_y}\right)^2}$$
$$= \frac{\pi^2 \cdot 200000}{(19,962)^2}$$
$$= 4953,608 \text{ MPa}$$

c. Tegangan kritis

$$F_{cr} = 0.658 \frac{F_y}{F_e} x F_y$$

= $0.658 \frac{344,738}{4953,608} \times 344,738$
= 334.841 MPa

d. Desain kekuatan tekan

$$\phi P_n = \phi x F_{cr} x A_g
= 0.85 \times 334.841 \times 5.67 \times 10^4
= 16137662 N$$

4.4 Kapasitas Beam pada Balok

Gelagar memanjang yang digunakan pada struktur jembatan ini adalah *box girder* yang didesain sedemikian rupa. Pengecekan pada gelagar memanjang berupa pengecekan kapasitas *Beam* yang meliputi pengecekan rasio kelangsingan penampang, pengecekan kekuatan momen nominal.

Pengecekan gelagar memanjang sebagai berikut:

Data: Profil penampang: Box 500 x 400 x 19 x 19

 $M_u = 199353$ Nmm (Elemen 411) dapat dilihat pada **Tabel 9.**

E = 200000 MPa

 $F_y = 344,438 \, \text{MPa}$

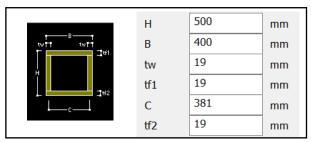
 $A = 1,536 \times 10^5 \,\mathrm{mm}^2$

 $L_b = 7353 \, \text{mm}$

 $I_y = 2,731 \times 10^{10} \text{ mm}^3$

Perhitungan:

a. Rasio kelangsingan penampang


$$r_y = \sqrt{\frac{I}{A}}$$

$$= \sqrt{\frac{2,731 \times 10^{10}}{1,536 \times 10^5}} = 421,663 \text{mm}$$

$$Lp = 1,76r_y \sqrt{\frac{E}{F_y}}$$

$$= 1,76 \times 421,663 \sqrt{\frac{200000}{344,738}}$$

$$= 17875,104 > L_b \text{ (Kompak)}$$

Gambar 6. Dimensi *box girder*

b. Berikut perhitungan untuk menentukan kekuatan momen nominal yang dapat dilihat penampang *profile* **Gambar 5.1**

$$y_1 = y_2 = \frac{\sum A \times y_i}{\sum A}$$

$$= \frac{((400 \times 19) \times 490,5) + ((400 \times 19) \times 9,5) + ((19 \times 462) \times 250)}{(350 \times 40) + (210 \times 28)}$$

$$= \frac{8189000}{32756} \text{ mm}$$

$$= 32756 \text{ mm}$$

$$a = 2 \times y = 2 \times 250$$

$$= 500 \text{ mm}$$

c. Modulus penampang plastis

$$Z_x = \frac{A}{2} \times a$$

$$= \frac{1,536 \times 10^5}{2} \times 500$$
$$= 38400000 \text{ mm}^3$$

d. Kekuatan momen nominal

$$\emptyset M_n = \emptyset \times Z_x \times F_y$$

= 0,9 × 38400000 × 344,738
= 1,191 × 10¹⁰ Nmm

4.4 Kapasitas Kabel

Setelah *Run Analisys, Select* semua *properties* kabel untuk dilihat tegangan kabelnya dan tegangan terbesar terdapat pada kabel 342 yaitu sebesar 3306268,51N dapat dilihat pada **Tabel 8.** dengan diameter 0,6 m, maka tegangan kabel menjadi:

Data:
$$P = 3306268,51N$$
 (kabel 342)
 $D = 60 \text{ mm}$

$$Fu = 1860$$

a. Luas Kabel

$$A_{kabel} = \frac{1}{4} \pi D^2$$
= $\frac{1}{4} \pi 60^2$ mm
= 2827,433

b. Tegangan izin kabel

$$f_{izin} = 0.7 \times f_u$$

= 0.7 × 1860
= 1302 N/mm²

c. Tegangan kabel

$$f = \frac{P}{A}$$

$$= \frac{\frac{3306268,51}{2827,433}}{21169,353} < f_{izin}$$

5. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Tabel 8. Hasil Perancangan Struktur Jembatan

Elemen Struktur	Profil dan Diameter Penampang	Nilai Tahanan Maksimum	Kapasitas Izin	Keterangan
Arch	1100×800×16×14	41660827,12 N	16137662N	Tegangan yang terjadi lebih besar dari tegangan izin
Balok	500×400×19×19	199353 Nmm	1,191×10 ¹⁰ Nmm	Tegangan balok yang terjadi lebih kecil dari tegangan izin
Kabel	60mm	1169,353 N/mm²	1302 N/mm²	Tegangan kabel yang terjadi lebih kecil dari tegangan izin

Dapat dilihat pada **Tabel 8.** hasil dari perancangan jembatan pelengkung baja dengan bentang 125m, menggunakan *profil box girder* dan *hollow* diperoleh dimensi yang efesien

Analisis Dinamik Jembatan Pelengkung (Studi kasus: Jembatan Palu IV)

untuk menahan beban yang berkerja pada jembatan. Hasil yang diperoleh dapat disimpulkan sebagai berikut:

- 1. Pemodelan pada elemen struktur *Arch* memiliki tegangan yang lebih besar dari tegangan izin
- 2. Pemodelan pada elemen struktur Balok memiliki tegangan yang lebih kecil dari tegangan izin
- 3. Pemodelan pada elemen struktur Kabel memiliki tegangan yang lebih kecil dari tegangan izin

Dapat disimpulkan bahwa elemen struktur balok dan kabel telah sesuai untuk menahan beban rencana yang terjadi, sedangkan elemen struktur *arch* tidak dapat menahan beban rencana, tegangan yang terjadi akibat panjang bentang yang melebihi 100m dan tidak memenuhinya syarat pada *preliminary design*. Sehingga faktor tersebut yang menyebabkan runtuhnya Jembatan IV Palu.

5.1 Saran

Saran yang dapat disampaikan penulis untuk penelitian selanjutnya yaitu diharapkan melakukan analisis dengan menggunakan metode *Time History* sehingga dapat mendapat hasil yang lebih akurat dan melakukan penelitian yang lebih mendalam mengenai jembatan *arch* dengan mempertimbangkan aspek-aspek lainnya.

DAFTAR PUSTAKA

- Badan Standardisasi Nasional. (2016). SNI 1725:2016: *Pembebanan untuk Jembatan*. Jakarta: Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2005). RSNI T-03-2005: *Perencanaan Struktur Baja untuk Jembatan.* Jakarta: Badan Standardisasi Nasional.
- Badan Standardisasi Nasional. (2016). SNI 2833:2016: *Perencanaan Jembatan Terhadap Beban Gempa*. Jakarta: Badan Standardisasi Nasional.
- Supriyadi dan Muntohar. (2007). JEMBATAN (Edisi Ke-IV). Yogyakarta: Beta Offset.
- American Concrete Institute (1996) Structural Journal. 38800 Country Club Drive, FarmingtonHills, MI 48331.