ANALISIS DAMPAK PENURUNAN PENYERAPAN EMISI CO₂ AKIBAT PEMBANGUNAN *FLY OVER* NURTANIO

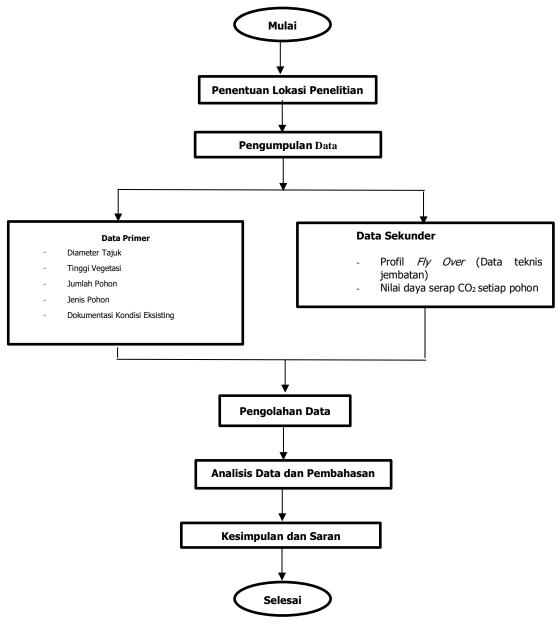
DR. EKA WARDHANI¹, AFINATUNNISA AHSANI¹

 Jurusan Teknik Lingkungan Fakultas Teknik Sipil dan Perencanaan (Institut Teknologi Nasional Bandung)
Email : Afinatunnisa@gmail.com

ABSTRAK

Pembangunan *Fly Over* Nurtanio merupakan salah satu strategi dan kebijakan alternatif yang dilakukan oleh pemerintah dalam menunjang kelancaran Kereta Cepat Indonesia China. Direncanakan perlintasan tidak sebidang antara jalan dan jalur kereta api. Dampak yang timbulkan dari pembangunan yaitu berkurangnya Ruang Terbuka hijau. Salah satu penyebab pemanasan global adalah emisi CO₂. Emisi CO₂ ini dapat diserap oleh tanaman dan ruang terbuka hijau sehingga perlu adanya analisis dampak penurunan penyerapan CO₂ dari berkurangnya RTH. Analisis ini dapat dilakukan dengan perhitungan jumlah vegetasi eksisting pada kawasan dengan metode faktor pohon. Jumlah emisi CO₂ yang terserap oleh pohon sebesar 2.289.263,38 kg/tahun, perdu sebesar 25.689,65 kg/tahun, dan semak sebesar 134 kg/tahun. Sehingga total daya serap vegetasi terhadap CO₂ yang akan hilang akibat pembangunan *Fly Over* sebanyak 2.315.087,03 kg/tahun.

Kata kunci: Ruang Terbuka Hijau, Emisi Karbon


1. PENDAHULUAN

Pembangunan *Fly Over* Nurtanio dilaksanakan sebagai salah satu strategi dan kebijakan alternatif yang dilakukan oleh pemerintah dalam menunjang kelancaran KCIC (Kereta Cepat Indonesia China). Lokasi Pembangunan *Fly Over* Nurtanio berada di Jalan Garuda No. 87 Bandung, pada koordinat -6°90′75.96″ LU-107°58′12.41″ LS hingga Jl. Abdul Rahman Saleh No. 83, pada koordinat -6°90′75.83″LU-107°58′12.55″ LS. Pembangunan *Fly Over* ini sepanjang 550 m dengan lebar 11,5 m dengan luas lahan yang dibutuhkan 6.325 m². Pembangunan *Fly Over* ini, akan menghilangkan pohon-pohon pelindung yang berada di jalan. Hal tersebut dapat mengurangi penyerapan CO₂ sehingga menyebabkan perubahan iklim. Berdasarkan hal tersebut di atas, dilakukan penelitian dengan judul "Analisis Dampak Penurunan Penyerapan Emisi CO₂ Akibat Pembangunan *Fly Over* Nurtanio" untuk dapat mengetahui berapa besar emisi CO₂ yang dihasilkan dan berapa jumlah O₂ yang hilang akibat dibangunnya *Fly Over* Nurtanio.

2. METODOLOGI

2.1 Bagan alir

Dalam penelitian analisis dampak penurunan penyerapan emisi CO₂ akibat pembangunan *Fly Over* Nurtanio, Adapun tahapan penelitian dapat dilihat pada Gambar 1.

Gambar 1. Bagan Alir

2.2 Pengumpulan Data

Pengumpulan penelitian data primer meliputi dimater tajuk, tinggi vegetasi, jumlah pohon, jenis pohon, dan dokumentasi kondisi eksisting yang diambil dengan metode survey langsung di lokasi penelitian. Selain itu, terdapar data sekunder yaitu profil *Fly Over* dan nilai daya serap CO_2 setiap pohon.

2.3 Metode Analisis Data

Berikut merupakan beberapa metoda dalam pengukuran kemampuan vegetasi dalam menyerap CO_2 :

1. Diameter Tajuk

FTSP Series:

Seminar Nasional dan Diseminasi Tugas Akhir 2024

Prinsip pengukuran ini yaitu diameter tajuk diukur dengan mengarahkan kompas pada arah proyeksi tajuk pohon dan lebar tajuk diukur menggunakan meteran dan kompas dengan 4 arah mata angin UTSB (utara, timur, selatan dan barat) (Ayuningtyas dkk., 2020).

2. Tinggi Vegetasi

Pengukuran ini menggunakan alat klinometer yang. Klinometer merupakan alat untuk mengukur sudut elevasi yang dibentuk antara garis datar dengan sebuah garis yang menghubungkan sebuah titik pada garis datar tersebut dengan titik puncak suatu objek (Syahrudi, 2019).

2.4 Pengolahan Data

Pengolahan data primer dan sekunder dalam penelitian ini untuk mengetahui kemampuan pohon dalam menyerap emisi CO₂.

1. Penentuan Diameter Tajuk

Diameter tajuk ditentukan dengan mengukur diameter terpanjang dan diameter terpendek tajuk kemudian di rata-ratakan.

2. Perhitungan Luas Tajuk

Luas tajuk dihitung dengan memperoleh diameter tajuk dalam satuan meter kemudian dilakukan perhitungan dengan persamaan luas bangun lingkaran (Roshintha & Mangkoediharjo, 2016).

3. Perhitungan kemampuan vegetasi dalam menyerap CO₂

Berikut merupakan kemampuan vegetasi dalam menyerap CO₂

Kemampuan Penyerapan Pohon = Daya serap perdu × Luasan tajuk

Kemampuan Penyerapan Perdu = Daya serap perdu × Luasan tajuk

Daya serap semak = Daya serap semak \times Jumlah semak

3. ANALISIS DAN PEMBAHASAN

3.1 Kondisi Eksisting Penyebaran Pohon Di Jalan Nurtanio

Pohon pada ruang terbuka hijau Jalan Nurtanio terdiri dari pohon mahoni (*Swietenia mahagoni*), sukun (*Artocarpus altilis*), nangka (*Artocarpus heterophyllus*), angsana (*Pterocarpus indicus*), kisabun (*Filicium deciplens*), ketapang (*Terminalia catappa*), bungur (*Lagerstroemis speciosa*), ki Acret (*Spathodea campanulate*), flamboyan (*Delonix regia*), dan pinus (*Aplysina picea*). Terdapat perdu atau pohon kecil seperti kersen (*Muntingia Calabura*), jambu air (*Eugenia aquea*), jambu biji (*Psidium guajava*), suji hias (*Dracaena reflexa*), suji hijau (*Draceana angustidolia*), sinyo nakal (*Duranta repens*), pucuk merah (*Syzygium myrtifolium*), palem putri (*Veitchia merillii*), mengkudu (*Morinda citrifolia*), belimbing (*Averrhoa carambola*), mangga (*Mangifera indica*), johar (*Cassia grandis*), dan gamal (*Gliricidia sepium*). Terdapat juga semak seperti sirih merah (*Acalypha wikesiana*), arbei (*Morus*), talas (*Colocasia esculenta*), siklok (*Agave attenuate*), ceriman (*Monstera deliciosa*), dan kembang kertas (*Bougenville glabra*).

3.2 Pengukukuran Tinggi Pohon

Pengukuran tinggi pohon merupakan suatu pengukuran untuk mengetahui pohon tersebut termasuk jenis pohon, perdu, atau semak.

Tabel 1 Tinggi Pohon

Nama Pohon	Nama Ilmiah	Tinggi Pohon (m)
Mahoni	Swietenia mahagoni	5,21
Sukun	Artocarpus altilis	7,02
Nangka	Artocarpus heterophyllus	7,02
Angsana	Pterocarpus indicus	5,17
Kisabun	Filicium deciplens	5,48
Ketapang	Terminalia catappa	5,48
Bungur	Lagerstroemis speciosa	6,43
Ki Acret	Spathodea campanulata	5,06
Flamboyan	Delonix regia	5,21
Pinus	Aplysina picea	7,02
Kersen	Muntingia Calabura	4,25
Jambu Air	Eugenia aquea	3,58
Jambu Biji	Psidium guajava	3,58
Suji Hias	Dracaena reflexa	2,20
Suji Hijau	Draceana angustidolia	2,40
Sinyo Nakal	Duranta repens	2,53
Pucuk Merah	Syzygium myrtifolium	3,58
Palem Putri	Veitchia merillii	2,00
Mengkudu	Morinda citrifolia	3,58
Belimbing	Averrhoa carambola	3,58
Mangga	Mangifera indica	3,58
Johar	Cassia grandis	3,58
Gamal	Gliricidia sepium	2,00

3.3 Kemampuan Daya Serap vegetasi

Berikut merupakan total daya serap vegetasi terhadap CO₂ di Jalan Nurtanio.

Tabel 2 Total Daya Serap Vegetasi

No	Vegetasi	Jumlah Daya Serap CO2 (kg/tahun)
1	Pohon	2.289.263,38
2	Perdu	25.689,65
3	Semak	134
	Total Daya Serap Vegetasi	2.315.087,03

Berdasarkan Tabel 4.2 menyatakan bahwa total daya serap vegetasi terhadap CO₂ yang akan hilang akibat pembangunan *Fly Over* sebanyak 2.289.263,38 kg/tahun. Kemudian berdasarkan pengamatan di lokasi penelitian, lokasi tersebut merupakan lokasi padat pemukiman, transportasi padat, dan banyaknya kegiatan usaha perdagangan serta perkantoran.

FTSP *Series :* Seminar Nasional dan Diseminasi Tugas Akhir 2024

Hal tersebut akan berdampak bagi kondisi lingkungan. Apabila vegetasi dihilangkan maka akan menyebabkan peningkatan suhu kelembaban.

4. KESIMPULAN

Berdasarkan hasil perhitungan di lokasi tempat akan dibangunnya Fly Over di Nurtanio dan setelah diinventarisir, jumlah pohon yang ada adalah sebanyak 151 pohon, 73 perdu dan 77 semak. Setelah dilakukan perhitungan dari kemampuan daya serap setiap jenis vegetasi yaitu pohon,, perdu dan semak, didapatkan hasil bahwa untuk jenis pohon yang berjumlah 151 pohon dapat menyerap CO₂ sebesar 2.289.263,38 kg/ tahun, jenis perdu yang berjumlah 73 perdu dapat menyerap CO₂ sebesar 25.689,65 kg/tahun, dan jenis semak yang berjumlah 77 semak dapat menyerap CO₂ sebesar 134,000 kg/tahun. Sehingga total dari kemampuan daya jenis pohon, perdu, dan semak adalah 2.315.087,03 kg/tahun.

DAFTAR PUSTAKA

- Ayuningtyas, F. Y., Nugroho, Y., dan Payung, D. (2020). *DIMENSI TEGAKAN NYAWAI (Ficus variegata Blume) PADA JARAK TANAM YANG BERBEDA DI KHDTK RIAM KIWA KALIMANTAN SELATAN. Jurnal Sylva Scienteae, 3*(4), 621-625.
- Syahrudi, Pe*nggunaan Klinometer Sebagai Pendukung Penguatan Konsep Siswa Tentang Perbandingan Trigonometri*, Indonesian Digital Journal of Mathematics and Education (2019), 6(1) 612 –619.