Perancangan Struktur Gedung Gudang *Sparepart*PT. Biofarma Menggunakan Beton Pracetak

GHIFARI ASLAMA QOLBUNSALIM

Mahasiswa, Program Studi Teknik Sipil, Institut Teknologi Nasional, Bandung Email: ghiafri20@gmail.com

ABSTRAK

Gedung Gudang Sparepart PT. Biofarma ini sebenarnya dirancang menggunakan metode cor in situ (konvensional), namun pada pengerjaanya hanya diberi waktu yang cukup singkat. Penggunaan beton pracetak memiliki keunggulan yaitu instan dan memiliki mutu yang terjaga juga tahan gempa. Kota bandung merupakan daerah yang berada dalam wilayah gempa kuat, sehingga penelitian ini dilakukan untuk merancang elemen struktur atas (balok dan kolom) sesuai dengan perencanaan bangunan tahan gempa. Sambungan antar elemen pracetak sangat berperan penting dalam struktur bangunan sehingga perlu diperhitungkan sesuai dengan peraturan.

Kata kunci: beton pracetak, , beton bertulang, analisis struktur

1. PENDAHULUAN

Desain Struktur bangunan gedung adalah penyelidikan metode terhadap stabilitas, kekuatan dan kekakuan struktur gedung yang akan dibangun. Perencanaan dan desain struktur dilakukan agar menghasilkan suatu struktur yang mampu menahan semua beban yang diterapkan tanpa kegagalan selama umur yang diharapkan. Struktur bangunan gedung terdiri dari dua bagian utama, yaitu struktur atas dan struktur bawah.

2. LANDASAN TEORI

2.1 Beton Pracetak

Beton pracetak adalah beton yang telah dicetak dan dibuat terlebih dahulu di pabrik atau tempat khusus yang terpisah dari lokasi konstruksi kemudian diantar ke lokasi menggunakan alat berat. Beton pracetak dibuat berdasarkan cetakan dan ukuran menyesuaikan dengan kebutuhan lapangan yang diminta. Beton pracetak ini dijaga dan dirawat dengan baik sesuai dengan standar yang berlaku hingga mencapai umur perawatan. Proses perawatan yang dilakukan bertujuan untuk menjaga kadar air dalam beton pracetak tersebut tetap terjaga dan mutunya terjamin dengan baik.

2.2 Sambungan Beton Pracetak

Beton pracetak ini pada dasarnya memiliki dua jenis sambungan pada sistem struktur beton pracetak, yaitu sambungan basah *(wet joint)* dan sambungan kering *(dry joint)*.

2.3 Analisis Struktur

Analisis stuktur adalah proses menghitung dan menentukan efek akibat gaya maupun beban yang bekerja pada struktu. Pada hal ini akan dilakukan analisis struktur berupa pengaruh P-delta, simpangan antar lantai, periode alami struktur dan gaya geser dasar seismik.

3. METODOLOGI

3.1 Preliminary Desain dan Perencanaan Penulangan

3.1.1 Perencanaan Dimensi dan Penulangan Balok

Untuk perencanaan dimensi balok disesuaikan dengan SNI 2847 – 2019 yang bisa dilihat pada hasilnya pada **Tabel 1.** dibawah ini.

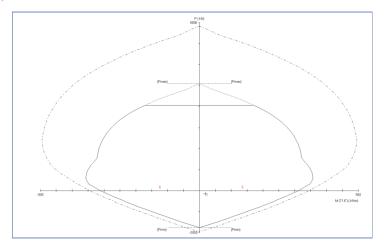
Tabel 1. Dimensi Balok Pracetak

Kode	Dimensi (mm)			
B1	300 x 350			
BA1	250 x 350			

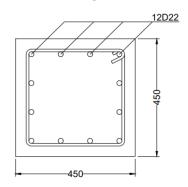
Hasil Analisa diperoleh balok induk berdimensi $300 \times 350 \text{ mm}$ dan balok anak berdimensi $250 \times 350 \text{ mm}$, dengan penulangan pada tumpuan, lapangan dan geser. Sehingga didapatkan hasil pada **Tabel 2.**

Tabel 2. Rekapitulasi Penulangan Balok

NAMA BALOK	GAMBAR KERJA				
PERLETAKAN	TUMPUAN	LAPANGAN			
B1 6 M	350	350			
TULANGAN ATAS	3D19	2D16			
TULANGAN BAWAH	2D19	2D16			
SENGKANG	D13 – 150	D13 - 150			


NAMA BALOK	GAMBAR KERJA				
PERLETAKAN	TUMPUAN	LAPANGAN			
B1 3,523 M	350	350			
DIMENSI BALOK	300 X 350	300 X 350			
TULANGAN ATAS	3D19	2D16			
TULANGAN BAWAH	2D19	4D16			
SENGKANG	D13 – 150	D13 - 150			
BA1 6 M	350	350			
DIMENSI BALOK	250 X 350	250 X 350			
TULANGAN ATAS	3D16	2D16			
TULANGAN BAWAH	2D16	2D16			
SENGKANG	D13 – 150	D13 - 150			
PERLETAKAN	TUMPUAN	LAPANGAN			
B1 3,523 M	350	350			
DIMENSI BALOK	250 X 350	250 X 350			
TULANGAN ATAS	2D16	2D16			
TULANGAN BAWAH	2D16	2D16			
SENGKANG	D13 – 150	D13 - 150			

3.1.2 Perencanaan Dimensi dan Penulangan Kolom


Perencanaan dimensi kolom diatur dalam SNI 2847-2019, dimana kolom-kolom harus memenuhi syarat sebagai berikut:

- 1. b < h
- 2. $b \ge 300 \text{ mm}$
- 3. $b/h \ge 0.4$

Sehingga direncanakan dimensi kolom 450×450 mm. Dalam studi ini perhitungan dibantu menggunakan *software SP Column,* sehingga didapatkan hasil rasio tulangan yaitu 2,293%, dengan penulangan 12D22.

Gambar 1. Diagram Interaksi

Gambar 2. Detail Penulangan Balok

3.2 Pemodelan ETABS

Pemodelan pada penelitian ini menggunakan *software* ETABS, dilakukan dengan memodelkan struktur atas (kolom, balok dan pelat) dengan dimensi yang sudah direncanakan pada tahap *preliminary desain*.

3.3 Input Beban

Penginputan beban pada ETABS dilakukan untuk memasukan nilai dari beban hidup (*live load*), beban mati (*dead load*), beban gempa, dll.

3.4 Analisis Struktur

Analisis Struktur dilakukan untuk mengeluarkan output berupa pengaruh P-delta, simpangan antar lantai, perioda getar alami dan gaya geser dasar.

3.4.1 Perioda Getar Alami dan Gaya Geser Dasar

Berdasarkan hasil analisis, untuk arah X dan Y yang didapat yaitu nilai T yang digunakan adalah 0,773 detik, maka hasil perhitungan Cs-x dan Cs-y yaitu sebesar 0,096.

Story	Fx	Fx Vx		Vd	factor Skala	Vd factor Skala	
	kN	kN	kN	kN	kN	kN	
Story4	171,2130156	171,2130156	145,531	85,8608	2,078	178,421	
Story3	209,2085589	380,4215745	323,358	162,467	2,440	396,437	
Story2	129,3801323	509,8017067	433,331	213,868	2,484	531,264	
Story1	54,03671327	563,83842	479,263	238,595	2,463	587,576	

Tabel 3. Vstatik VS Vdinamik arah X dan Y

Berdasarkan tabel V dinamik sudah lebih besar dari V statik sehingga struktur gedung memiliki kekuatan yang cukup untuk menahan gaya geser.

3.4.2 Simpangan Antar Tingkat

Hasil dari analisis simpangan antar tingkat yang diizinkan pada lantai 1 yaitu 60 mm dan untuk lantai 2 – 4 bernilai 80 mm.

Story	Displacement		Elastic Drift		_	Inelastic Drift		Drift	
	δe _X	δe _Y	Δ_X	⊿ _Y	h	δ_{X}	$\delta_{\scriptscriptstyle Y}$	Limit	Cek
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
4	21,887	21,037	4,761	4,353	4000	26,186	23,942	80	OK
3	17,126	16,684	7,050	6,686	4000	38,775	36,773	80	OK
2	10,076	9,998	7,412	7,312	4000	40,766	40,216	80	OK
1	2.664	2.686	2.664	2.686	3000	14.652	14.773	60	OK

Tabel 4. Displacement VS Drift Limit

3.4.2 Pengaruh P-delta

Pada analsa pengaruh P-delta ini θ pada setiap lantai harus dicari dan tidak boleh melebihi θ max, yang bisa dilihat pada **Tabel 4.** dibawah ini.

Tabel 5. Pengaruh P-delta

Story	Inelastic Drift		Story Forces			6	Koefisien Stabilitas		Batas	Batas
	Δ_X	Δ_{Y}	Р	V_{x}	V_{ν}	h	ii Koerisieli 30		rengaru	Stabilta
	(mm)	(mm)	(kN)	(kN)	(kN)	(mm)	θХ	θΥ	h P- Delta	s Struktu
	()	()	(,	(,	(,	()		• •	Dena	Struktu
4	26,186	23,942	771,1146	84,2046	94,7217	4000	0,0109	0,0089	0,1	0,0909
3	38,775	36,773	2645,3375	160,4708	188,442	4000	0,0291	0,0235	0,1	0,0909
2	40,766	40,216	4519,5604	211,7498	249,8588	4000	0,0396	0,0331	0,1	0,0909
1	14,652	14,773	6393,7833	236,1995	275,3722	3000	0,0240	0,0208	0,1	0,0909

4. KESIMPULAN

Hasil analisis struktur yaitu perioda getar alami, gaya geser dasar, simpangan antar tingkat dan pengaruh P-delta sudah sesuai dengan persyaratan SNI 1726-2019. Penulangan pada balok juga sudah didesain dengan *under reinforced*, dengan tulangan sengkang D13 sebagai pengaman meskipun nilai Vu < Vc. Untuk desain kolom menggunakan *software SP Column*, dimana rasio tulangan sudah memenuhi syarat yaitu lebih dari 1% dan kurang dari 10%.

DAFTAR RUJUKAN

- Badan Standarisasi Nasional. (2019). *Tata Cara Perencanaan Ketahanan Gempa untuk* Struktur Bangunan Gedung dan Nongedung (SNI 1726-2019). Jakarta: Badan Standarisasi Nasional.
- Badan Standarisasi Nasional. (2020). *Tentang Beban Desain Minimum dan Kriteria untuk Gedung* (SNI 1727-2020). Jakarta: Badan Standarisasi Nasional.
- Badan Standarisasi Nasional. (2019). *Tentang Persyaratan Beton Struktural untuk Bangunan Gedung* (SNI 2847-2019). Jakarta : Badan Standarisasi Nasional
- Devania, Adita & Rudi Hermawan, Andrias. (2020). *Modifikasi Struktur Gedung dengan Beton Pracetak pada Apartemen The Conexio.* Jakarta.
- Frinsilia Jaglien Liando Servie O. Dapas, Steenie E. Wallah. (2020). *Perencanaan Struktur Beton Bertulang Gedung Kuliah 5 Lantai*. Manado.
- Danu Hartono, Barie & Lestyowati, Yoke. (2020). *Perhitungan Struktur Beton Bertulang Gedung Sekolah 7 Lantai di Kota Pontianak.* Pontianak.
- Prasetya, Albertus Denny. (2018). *Desain Modifikasi Struktur Gedung Perkantoran One Galaxy dengan Dual System menggunakan Elemen Pracetak dan Hollow Core Slab*. Institut Teknologi Sepuluh Nopember.