Perencanaan Pengendalian Kebisingan. Studi Kasus : Area *Rewinder Machine* Perusahaan Kertas

DINDA NUR AULIA SEPTIANI¹, CANDRA NUGRAHA²

- Institut Teknologi Nasional (Itenas) Fakultas Teknik Sipil dan Perencanaan, Bandung
- 2. Institut Teknologi Nasional (Itenas) Fakultas Teknik Sipil dan Perencanaan, Bandung

Email: auliadinda996@gmail.com

ABSTRAK

Industrialisasi merupakan motor penggerak bagi kesejahteraan dan menempati urutan pertama dalam kehidupan masyarakat modern di negara berkembang. Salah satu faktor yang mempengaruhi kesehatan pekerja akibat kegiatan industri adalah kebisingan. Penelitian ini bertujuan untuk menganalisi tingkat kebisingan yang terjadi di area Rewinder Machine dan melakukan pengendalian terhadap kebisingan yang terjadi. Kebisingan diukur dengan menggunakan sound level meter selama 24 jam. Kebisingan pada 11 titik ukur melampaui nilai ambang batas NAB. Sehingga diperlukan perencanaan pemasangan barrier. Material barrier yang terpilih adalah plexiglass dengan nilai NR sebesar 43,38 dBA. Nilai kebisingan setelah pemasangan barrier adalah 40 dBA untuk titik 11, dan 42 dBA untuk titik 12. Selain itu reduksi kebisingan juga dapat dilakukan dengan Earplug yang dapat mengurangi kebisingan sebesar 33 dB.

Kata Kunci: Kebisingan, Barrier, Rewinder Mesin, Reduksi.

1. PENDAHULUAN

Industrialisasi merupakan motor penggerak bagi kesejahteraan dan menempati urutan pertama dalam kehidupan masyarakat modern di negara berkembang, industri sangat mempengaruhi pembangunan dan kebutuhan masyarakat. Seiring dengan perkembangan zaman, bahan dan alat produksi yang digunakan semakin beragam dan canggih untuk memudahkan dan mengurangi aktivitas manusia. Semua kegiatan industri yang dilakukan akan mempengaruh kesehatan pekerja, dan salah satu faktor yang mempengaruhi kesehatan pekerja adalah kebisingan. Kebisingan adalah bunyi yang tidak diinginkan dari usaha atau kegiatan dalam tingkat dan waktu tertentu yang ditimbulkan oleh perusahaan atau kegiatan pada tingkat dan waktu tertentu, yang dapat mengganggu kesehatan manusia dan kenyamanan lingkungan. Sedangkan menurut Suma'mur (2009), kebisingan merupakan bunyi atau suara yang tidak dikehendaki, berbentuk gelombang longitudinal, berasal dari sumber bunyi atau suara yang merambat melalui udara atau medium rambat lainnya.

Menurut Masir (2012), 120 juta orang di Amerika Serikat kehilangan daya dengar, pada tahun 1981, 9 juta pekerja terpapar kebisingan setiap hari dengan tingkat kebisingan 85 dB atau lebih setiap harinya, angka tersebut meningkat hingga 30 juta orang pada tahun 1990. Sebanyak 4-5 juta orang, 12-15% dari keseluruhan pekerja terpapar bising pada tingkat 85 dB atau lebih di negara Jerman dan negara-negara berkembang lainnya. Sedangkan menurut OSHA (Occupational Safety and Health Administration) (Minggarsari, 2009), salah satu masalah kesehatan kerja yang paling umum terjadi di Amerika Serikat selama lebih dari 25 tahun adalah

gangguan pendengaran, karena setiap tahunnya sekitar 30 juta orang pekerja terpajan kebisingan yang berbahaya.

Perusahaan yang menjadi objek penelitian ini yaitu salah satu perusahaan di Kabupaten Karawang yang bergerak di bidang industri kertas. Setiap kegiatan produksi yang dilakukan di perusahaan kertas tersebut memiliki risiko bagi para pekerjanya karena suara yang dihasilkan dari mesin-mesin produksinya. Salah satunya yaitu kegiatan produksi di *Rewinder Machine* yang selanjutnya disingkat menjadi *Rewinder Machine*. Kegiatan produksi yang dilakukan dapat berdampak bagi kesehatan yang dapat dialami oleh pekerja akibat suara yang dihasilkan mesing-mesin produksi tersebut.

Risiko dari kegiatan industri tersebut dapat dihindari dengan berkerja sesuai prosedur yang ditetapkan, maka pemerintah telah menyusun, dan menetapkan kebijakan terkait kebisingan, yaitu PerMenaKer No. 5 Tahun 2018 Tentang Keselamatan dan Kesehatan Kerja Lingkungan Kerja. Berdasarkan peraturan tersebut, pemaparan kebisingan di industri dengan tingkat kebisingan 85dB (A) adalah untuk 8 jam kerja per hari atau 40 jam kerja per minggu. Namun kerap kali para pekerja dan pihak perusahaan kurang disiplin dalam memenuhi keselamatan dan kesehatan kerjanya. Berdasarkan hal tersebut maka perlunya dilakukan pengukuran, pemetaan, dan pengendalian terhadap kebisingan yang ada, sehingga dapat meminimalisir risiko yang berdampak pada kesehatan pekerja.

2. METODOLOGI

Kebisingan diukur menggunakan *sound level meter* selama 24 jam sesuai dengan standar pada KepMenLH No. 48 Tahun 1996 Tentang Baku Tingkat Kebisingan. Pengukuran dilakukan pada 12 titik ukur yang ditentukan berdasarkan lokasi dimana operator bekerja di area *Rewinder Machine*. Hasil pengukuran kebisingan dibandingan dengan Nilai Ambang Batas (NAB) berdasarkan PerMenaKer No. 5 Tahun 2018, NAB yang digunakan yaitu 85 dBA karena operator mesin pada area Rewinder Machine bekerja selama 8 jam/hari. Kontur kebisingan dibuat dengan menginput koordinat X, Y, Z ke dalam *golden software surfer*, dan peta kebisingan ruang dibuat menggunakan *software AutoCAD* 2014. Material yang dipilih ditentukan dengan menghitung nilai *Transmission Loss* (TL), dan *Noise Reduction* (NR) dari masing-masing bahan. Ketinggian barrier ditentukan dengan variasi ketinggian menggunakan metode Maekawa. Reduksi yang dihasilkan dari penggunaan APDT (Alat Pelindung Diri Telinga) dihitung menggunakan persamaan pada PerMenKes No. 70 tahun 2016 Tentang Standard dan Persyaratan Kesehatan Lingkungan di Tempat Kerja.

3. ISI (HASIL PENELITIAN DAN PEMBAHASAN)

3.1 Data Tingkat Kebisingan

Kebisingan diukur pada rentang waktu yang telah ditentukan. Diperoleh 120 data hasil pengukuran selama 10 menit dengan pembacaan setiap 5 detik. Data tersebut diolah menjadi data kebisingan 24 jam (LSM). Data tersebut diolah menggunakan persamaan :

$$L_{\text{SM}} = 10 \log 1/24 (16 \times 10^{0.1} L_{\text{S}} + 8 \times 10^{0.1} (L_{\text{M}+5})) dB(A)$$
(1)

Dimana:

L_S= Leq di siang hari [dB(A)]

 $L_M = \text{Leg di malam hari } [dB(A)]$

 L_{SM} = Leg pada pengukuran 24 jam [dB(A)]

Hasil perhitungan dengan persamaan tersebut adalah seperti yang ditunjukkan pada Tabel 2.

Tabel 2 Nilai LSM Pada Setiap Titik Ukur

Titik Pengukuran	LSM (dBA)	NAB (Nilai Ambang Batas) Kebisingan (PerMenaKer No. 5 Tahun 2018) (dBA)	Keterangan	
Titik 1	86,6	85	Melampaui NAB	
Titik 2	87,8	85	Melampaui NAB	
Titik 3	89,4	85	Melampaui NAB	
Titik 4	88,7	85	Melampaui NAB	
Titik 5	89,8	85	Melampaui NAB	
Titik 6	91,7	85	Melampaui NAB	
Titik 7	85,5	85	Melampaui NAB	
Titik 8	89,4	85	Melampaui NAB	
Titik 9	88,3	85	Melampaui NAB	
Titik 10	88,1	85	Melampaui NAB	
Titik 11	85,4	85	Melampaui NAB	
Titik 12	83,3	85	Dibawah NAB	

Berdasarkan **Tabel 2** dapat diketahui terdapat 11 titik ukur yang memiliki nilai LSM melampaui NAB (Nilai Ambang Batas) berdasarkan PerMenaKer No. 5 Tahun 2018. Nilai LSM tertinggi ada pada titik 6 yaitu sebesar 89.3 dBA, hal tersebut disebabkan titik 6 berada diantara *cutter Rewinder Machine*, ketika cutter memotong *roll* yang sudah digulung ulang, kebisingan dari kedua *cutter* pada mesin terakumulasi. Nilai LSM terendah berada pada titik 12 yaitu sebesar 81.0 dBA, hal tersebut disebabkan titik 12 berjarak cukup jauh dari kedua *Rewinder Machine*.

Perencanaan Barrier

Barrier akan dibuat di dekat titik 4, 5, 6, dan 7, serta di depan titik 11, dan 12 karena area pada titik tersebut memungkinkan untuk dibuatnya barrier. Berdasarkan nilai LSM maka nilai kebisingan yang melampaui NAB perlu diturunkan sehingga berada di bawah nilai NAB dengan mengurangi nilai LSM dengan nilai NAB. Diperlukan material yang dapat mereduksi kebisingan. Pada penelitian ini akan dipilih 4 jenis material untuk dijadikan bahan *barrier*, yaitu *wood, plywood, plexiglass*, dan *gypsum*. Berikut merupakan spesifikasi dari keempat material tersebut berdasarkan *SAR* (2003):

Tabel 3 Material Barrier

Material	Thickness	Surface Density
	mm	Kg/m2
Wood	25	18
Plywood	25	16.1
Plexiglass	6	7.3
Gypsum	10	9.1

Pemilihan material yang layak untuk digunakan sebagai bahan barrier dilakukan dengan menghitung nilai TL (*Transmission Loss*) dan nilai NR (*Noise Reduction*) dari bahan tersebut menggunakan **Persamaan 2** dan **Persamaan 3** (Mayangsari, 2009).

$$TL = (20 \log W) + (20 \log f) - C...(2)$$

Dimana:

TL = Transmission Loss (dB)

f = Frekuensi (Hz)

W = Surface Density Material (Kg/m²)
C = Nilai koefisien yang telah ditentukan yaitu 47

NR = TL + 6.....(3)

Dimana:

NR: Noise Reduction (dB) TL = Transmission Loss (dB)

Nilai TL dan NR dihitung berdasarkan frekuensi yang digunakan yaitu 125 Hz, 200 Hz, 500 Hz, 1000 Hz, dan 2000 Hz. Frekuensi tersebut dipilih karena pada frekuensi tersebut adalah rentang frekuensi bicara manusia (Arista, 2017).

	Thickness	Surface	Transmission Loss (TL) dB				
Material	THICKHESS	Density	Frekuensi (Hz)				
	mm	Kg/m2	125	200	500	1000	2000
Wood	25	18	20	24	32	38	44
Plywood	25	16,1	19	23	31	37	43
Plexialass	6	7.3	12	16	24	30	36

Tabel 4 Transmission Loss (TL) pada Masing-Masing Material

Tabel 5 Noise Reduction pada Masing-Masing Material

	Thickness	Surface	Noise Reduction (NR) dB				
Material	Inickness	Density	Frekuensi (Hz)				
	mm	Kg/m2	125	200	500	1000	2000
Wood	25	18	26	30	38	44	50
Plywood	25	16,1	25	29	37	43	49
Plexiglass	6	7,3	18	22	30	36	42
Gypsum	10	9,1	15	24	32	38	44

Berdasarkan **Tabel 4** nilai *Transmission Loss* tertinggi dihasilkan oleh bahan material wood dengan nilai TL 44 dB pada frekuensi 2000 Hz.

Berdasarkan **Tabel 4** nilai *Noise Reduction* tertinggi dihasilkan oleh bahan material *wood* dengan niai NR 50 dB pada frekuensi 2000 Hz. Namun mempertimbangkan faktor ketahanan bahan dan faktor *safety* karena mesin bekerja selama 24 jam tanpa henti, maka dipilihlah material *plexiglass* sebagai material pembuat *barrier*, karena material *plexiglass* bening (tidak berwarna) sehingga pekerja masih dapat mengawasi mesin yang bekerja.

Reduksi Kebisingan Oleh APDT (Alat Pelindung Diri Telinga)

10

Gypsum

Pengendalian kebisingan yang telah dilakukan oleh perusahaan terkait pada area *rewinder machine* adalah penggunaan Alat Pelindung Diri Telinga (APDT) berupa *ear plug*. Berdasarkan PerMenKes No. 70 tahun 2016, Alat Pelindung Diri Telinga (APDT) berupa *ear plug* memiliki NRR (*Noise Reduction Rate*) sebesar 33 dB. Reduksi kebisingan dihitung dengan persamaan :

dBA Efektif = dBA pajanan awal $-\{[NRR APDT -7]\} \times 50\%$(7)

Dimana:

dBA Efektif = Pajanan yang diterima setelah penggunaan APDT (dBA) dBA pajanan awal = Pajanan yang diterima sebelum penggunaan APDT (dBA) NRR APDT = Noise Reduction Rate APDT (dB) Faktor koreksi = 7

Tabel 7 Reduksi Kebisingan Oleh APDT

Titik	LSM (dBA)	NAB	NRR Ear Plug (dB)	Faktor koreksi	Pajanan yang diterima (dBA)	Keterangan
1	86,6				73,6	Dibawah NAB
2	87,8				74,8	Dibawah NAB
3	89,4				76,4	Dibawah NAB
4	91,7				78,7	Dibawah NAB
5	89,8				76,8	Dibawah NAB
6	88,7	85	33	7	75,7	Dibawah NAB
7	85,5	65	33	72,5 Dibawah 76,4 Dibawah	Dibawah NAB	
8	89,4				Dibawah NAB	
9	88,3					Dibawah NAB
10	88,1				75,1	Dibawah NAB
11	85,4				72,4	Dibawah NAB
12	83,3				70,3	Dibawah NAB

Berdasarkan **Tabel 7**, hasil perhitungan menunjukkan nilai pajanan yang diterima setelah menggunakan *ear plug* berada dibawah nilai NAB, berdasarkan PerMenaKer No. 5 Tahun 2018 yaitu 85 dBA. Penggunaan *earplug* cukup efektif dalam mereduksi kebisingan yang diterima pekerja.

KEBISINGAN SETELAH PENGENDALIAN

Setelah dilakukan pengendalian menggunakan barrier, dan menghitung paparan yang diterima dengan penggunaan *ear plug*, maka nilai kebisingan yang ada telah menurun.

Tabel 8 Pajanan yang Diterima Pekerja Setelah Dilakuak Pengendaian dengan Barrier dan Ear plug

Titik	NAB	Nilai Kebisingan yang diterima (dBA) **Barrier Earplug		
1		43,4	73,6	
			,	
2		44,6	74,8	
3		46,1	76,4	
4		48,3	78,7	
5	85	46,4	76,8	
6		45,3	75,7	
7		42,1	72,5	
8		46,2	76,4	
9		45,0	75,3	
10		44,9	75,1	
11		36,67	72,4	
12		34,57	70,3	

Berdasarkan **Tabel 6** penggunaan barrier *plexiglass* yang memiliki ketebalan 6 mm; *surface density* 7.3 kg/m2, dengan ketinggian barrier 4 m, dan penggunaan *ear plug* dalam upaya pengendalian kebisingan efekif mereduksi kebisingan sehingga kebisingan yang timbul tidak membahayakan bagi kesehatan pendengaran.

4. KESIMPULAN

Kesimpulan dari penelitian ini yaitu pengendalian kebisingan di area *Rewinder Machine* dapat dilakukan dengan pemasangan barrier dan penggunaan Earplug. Material yang terpilih yaitu material *wood* karena memiliki nilai reduksi paling tinggi yaitu 50 dB pada frekuensi 2000 Hz. Mempertimbangkan faktor safety yaitu kondisi di lapangan, dan factor ketahanan bahan, terpilihlah material *plexiglass* bening sebagai bahan *barrier* agar mesin tetap bisa terpantau, *plexiglass* yang memiliki ketebalan 6 mm; dan surface density 7.3 kg/m² dengan nilai TL sebesar 36 dB, dan nilai NR sebesar 42 dB sebagai material barrier yang akan dirancang. Reduksi kebisingan yang dihasilkan oleh penggunaan *earplug* dengan NRR sebesar 33 dB cukup efektif dalam mengurangi kebisingan di area *Rewinder Machine*.

UCAPAN TERIMA KASIH

Penulis mengucapkan terimakasih kepada pihak yang telah membantu penulis dalam penelittian ini. Terimakasih kepada Allah SWT, kedua orang tua penulis, sahabat, dan perusahaan kertas yang menjadi objek penelitian ini.

DAFTAR RUJUKAN

- Arista, E., Guna, R. R. D. P. B., & Double, M. K. K. A. A. (2017). Track Jalur Kereta Api Di Area Pemukiman Lintas Manggarai-Bekasi. *Jurnal Perkeretaapian Indonesia, 1*(2), 97-104.
- Ariyadi, R. G. (2016). *Peningkatan Atenuasi Penghalang Bising Dalam Mengendalikan Kebisingan Akibat Lalu Lintas Di Sekolah Dasar Negeri Siwalankerto I Surabaya Menggunakan Metode Simulasi 2 Dimensi.* Institut Teknologi Sepuluh Nopember Surabaya.
- Keputusan Menteri Negara Lingkungan Hidup No. 48 Tahun 1996 Tentang: Baku Tingkat Kebisingan, (1996).
- Peraturan Menteri Kesehatan Republik IndonesiaNo. 70 Tahun 2016 tentang Standar dan Persyaratan Kesehatan Lingkungan Kerja, (2016).
- Peraturan Menteri Ketenagakerjaan dan Transmigrasi Republik Indonesia No. 5 Tahun 2018 tentang Keselamatan dan Kesehatan Kerja Lingkungan, (2018).
- Masir, N., Ghoddoosi, M., Mansor, S., Abdul-Rahman, F., Florence, C. S., Mohamed-Ismail, N. A., Md-Latar, N. H. (2012). RCL2, a potential formalin substitute for tissue fixation in routine pathological specimens. *Histopathology*, *60*(5), 804-815.
- Mashuri, M. (2007). Penggunaan Akustika Luar-Ruangan dalam Menanggulangi Kebisingan pada Bangunan. *SMARTek, 5*(3).
- Mayangsari, A. P. (2009). Perancangan Barrier Untuk Menurunkan Tingkat Kebisingan Pada Jalur Rel Kereta Api Di Jalan Ambengan Surabaya Dengan Menggunakan Metode Nomograph: Surabaya: Digilib. ITS.
- Minggarsari, H. D. (2019). Hubungan Intensitas Kebisingan Dengan Keluhan Auditori Pada Pekerja Bagian Produksi Pabrik Fabrikasi Baja. *Binawan Student Journal, 1*(3), 137-141.
- SAR, G. (2003). *Guidelines on Design of Noise Barriers Environmental Protection Department and Highways Department January*
- Suma'mur.2009. Hygine Perusahaan dan Keselamatan Kerja. Jakarta: CV. Sagung Seto.