Evaluasi Ensemble Stacking Arsitektur EfficientNetB3 dan EfficientNetV2S
(Studi Kasus Klasifikasi Penyakit Alzheimer)
Kata Kunci:
Deep Learning, EfficientNetB3, EfficientNetV2S, Ensemble Stacking, Alzheimer’sAbstrak
ABSTRAK
Perkembangan artificial intelligence pada bidang deep learning pada computer vision banyak diterapkan dalam mendeteksi penyakit salah satunya Alzheimer. Selain dibutuhkan suatu model dengan akurasi tinggi juga dibutuhkan efisiensi. Penelitian ini bertujuan untuk menggabungkan hasil prediksi EfficientNetB3 dengan EfficientNetV2S untuk meningkatkan accuracy dan menurunkan tingkat kesalahan. Metode ensemble stacking menggabungkan prediksi dari kedua model untuk meningkatkan kinerja model. Hasil yang diperoleh model kinerja tertinggi berdasarkan metrik evaluasi diperoleh pada ensemble model pada learning rate 0,0001 pada 50 epoch dengan evaluasi performa model 99,98% pada accuracy, 99,98% precision, 99,98% recall, dan 99,98% f1-score pada pengujian 6400 data. Selain itu ensemble model dapat menurunkan kesalahan prediksi yaitu total 1 kesalahan.
ABSTRACT
The advancement of artificial intelligence in the field of deep learning, particularly in computer vision, has been widely applied in disease detection, including Alzheimer's disease. Beyond requiring a highly accurate model, efficiency is also crucial. This study aims to combine the prediction outcomes of EfficientNetB3 and EfficientNetV2S to enhance accuracy and reduce error rates. The ensemble stacking method merges predictions from both models to enhance overall performance. The best performing model's results were achieved using an ensemble model with a learning rate of 0.0001, over 50 epochs. The model demonstrated an evaluation performance of 99.98% accuracy, 99.98% precision, 99.98% recall, and 99.98% F1-score in testing with 6400 data points. Furthermore, the ensemble model managed to reduce prediction errors to a total of 1 mistakes.